Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1501 2024-06-05 17:13:46

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 46,724

Re: crème de la crème

1463) Donald J. Cram

Gist

Life:

Donald Cram was born and raised in Chester, Vermont. When Cram was four years old, his father died. Because money was scarce, Cram began working at an early age and was able to continue his education thanks to scholarships. After studies at Rollins College in Winter Park, Florida, and the University of Nebraska-Lincoln, he worked at Merck & Co. He received his doctorate at Harvard University in 1947. He subsequently worked at UCLA in Los Angeles. Donald Cram was married twice, first to Jean Turner and then to Jane Maxwell.

Work:

Chemical reactions often occur through the influence of molecules that have cavities and pockets where other atoms and molecules can be attached to then join with other molecules. After Charles Pedersen discovered crown ethers, molecules that can capture certain metallic atoms, Donald Cram succeeded in building molecules with the ability to attach specific atoms and molecules to themselves. This made it possible to create chemical compounds through chemical reactions that have a significant impact on biological processes.

Summary

Donald J. Cram (born April 22, 1919, Chester, Vermont, U.S.—died June 17, 2001, Palm Desert, California) was an American chemist who, along with Charles J. Pedersen and Jean-Marie Lehn, was awarded the 1987 Nobel Prize for Chemistry for his creation of molecules that mimic the chemical behaviour of molecules found in living systems.

Cram was educated at Rollins College in Winter Park, Florida, and at the University of Nebraska, and he received a doctorate in organic chemistry from Harvard University in 1947. He joined the faculty of the University of California at Los Angeles in 1947 and became a full professor there in 1956 and emeritus in 1990.

Donald J. Cram (born April 22, 1919, Chester, Vermont, U.S.—died June 17, 2001, Palm Desert, California) was an American chemist who, along with Charles J. Pedersen and Jean-Marie Lehn, was awarded the 1987 Nobel Prize for Chemistry for his creation of molecules that mimic the chemical behaviour of molecules found in living systems.

Cram was educated at Rollins College in Winter Park, Florida, and at the University of Nebraska, and he received a doctorate in organic chemistry from Harvard University in 1947. He joined the faculty of the University of California at Los Angeles in 1947 and became a full professor there in 1956 and emeritus in 1990.

Details

Donald James Cram (April 22, 1919 – June 17, 2001) was an American chemist who shared the 1987 Nobel Prize in Chemistry with Jean-Marie Lehn and Charles J. Pedersen "for their development and use of molecules with structure-specific interactions of high selectivity." They were the founders of the field of host–guest chemistry.

Early life and education

Cram was born and raised in Chester, Vermont, to a Scottish immigrant father, and a German immigrant mother. His father died before Cram turned four, leaving him the only male in a family of five. He grew up on Aid to Dependent Children, and learned to work at an early age, doing jobs such as picking fruit, tossing newspapers, and painting houses, while bartering for piano lessons. By the time he turned eighteen, he had worked at least eighteen different jobs.

Cram attended the Winwood High School in Long Island, N.Y. From 1938 to 1941, he attended Rollins College in Winter Park, Florida on a national honorary scholarship, where he worked as an assistant in the chemistry department, and was active in theater, chapel choir, Lambda Chi Alpha, Phi Society, and Zeta Alpha Epsilon. It was at Rollins that he became known for building his own chemistry equipment. In 1941, he graduated from Rollins College with a BS in chemistry.

In 1942, he graduated from the University of Nebraska–Lincoln with a MS in organic chemistry, with Norman O. Cromwell serving as his thesis adviser. His subject was "Amino ketones, mechanism studies of the reactions of heterocyclic secondary amines with -bromo-, -unsaturated ketones."

In 1947, Cram graduated from Harvard University with a PhD in organic chemistry, with Louis Fieser serving as the adviser on his dissertation on "Syntheses and reactions of 2-(ketoalkyl)-3-hydroxy-1,4-naphthoquinones"

Career

From 1942 to 1945, Cram worked in chemical research at Merck & Co laboratories, doing penicillin research with mentor Max Tishler. Postdoctoral work was as an American Chemical Society postdoctoral fellow at the Massachusetts Institute of Technology, with John D. Roberts. Cram was the originator of Cram's rule, which provides a model for predicting the outcome of nucleophilic attack of carbonyl compounds. He published over 350 research papers and eight books on organic chemistry, and taught graduate and post-doctoral students from 21 different countries.

Research

Cram expanded upon Charles Pedersen's ground-breaking synthesis of crown ethers, two-dimensional organic compounds that are able to recognize and selectively combine with the ions of certain metal elements. He synthesized molecules that took this chemistry into three dimensions, creating an array of differently shaped molecules that could interact selectively with other chemicals because of their complementary three-dimensional structures. Cram's work represented a large step toward the synthesis of functional laboratory-made mimics of enzymes and other natural molecules whose special chemical behavior is due to their characteristic structure. He also did work in stereochemistry and Cram's rule of asymmetric induction is named after him.

In 1973, Cram collaborated on research with Irish chemist Francis Leslie Scott.

Professor

Cram was named an assistant professor at the University of California, Los Angeles in 1947, and a professor in 1955. He served there until his retirement in 1987. He was a popular teacher, having instructed some 8,000 undergraduates in his career and guided the academic output of 200 graduate students. He entertained his classes by strumming his guitar and singing folk songs.

cram-13387-portrait-mini-2x.jpg


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#1502 2024-06-06 18:02:54

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 46,724

Re: crème de la crème

1464) Jean-Marie Lehn

Summary

Jean-Marie Lehn (born September 30, 1939, Rosheim, France) is a French chemist who, together with Charles J. Pedersen and Donald J. Cram, was awarded the Nobel Prize for Chemistry in 1987 for his contribution to the laboratory synthesis of molecules that mimic the vital chemical functions of molecules in living organisms.

Lehn earned a Ph.D. in chemistry from the University of Strasbourg in 1963, and in 1970 he became a professor of chemistry at Louis Pasteur University in Strasbourg. From 1979 to 2010 he was a professor at the Collège de France in Paris.

Lehn expanded on Pedersen’s achievement in creating crown ethers, a class of two-dimensional ring-shaped organic compounds that are capable of selectively recognizing and combining with other molecules. In the course of his efforts to synthesize three-dimensional molecules that would possess similar reactive characteristics, Lehn created a molecule that combines with the chemical acetylcholine, which is an important neurotransmitter in the brain. His work raised the possibility of creating totally artificial enzymes that would have characteristics superior to their natural counterparts in the human body.

Details

Jean-Marie Lehn (born 30 September 1939) is a French chemist who received the Nobel Prize in Chemistry together with Donald Cram and Charles Pedersen in 1987 for his synthesis of cryptands. Lehn was an early innovator in the field of supramolecular chemistry, i.e., the chemistry of host–guest molecular assemblies created by intermolecular interactions, and continues to innovate in this field. He described the process by which molecules recognize each other. Drugs, for example, "know" which cell to destroy and which to let live. As of January 2006, his group has published 790 peer-reviewed articles in chemistry literature.

Biography

Early years

Lehn was born in Rosheim, Alsace, France to Pierre and Marie Lehn. He is of Alsatian German descent. His father was a baker, but because of his interest in music, he later became the city organist. Lehn also studied music, saying that it became his major interest after science. He has continued to play the organ throughout his professional career as a scientist. His high school studies in Obernai, from 1950 to 1957, included Latin, Greek, German, and English languages, French literature, and he later became very keen of both philosophy and science, particularly chemistry. In July 1957, he obtained the baccalauréat in philosophy, and in September of the same year, the baccalauréat in Natural Sciences.

At the University of Strasbourg, although he considered studying philosophy, he ended up taking courses in physical, chemical and natural sciences, attending the lectures of Guy Ourisson, and realizing that he wanted to pursue a research career in organic chemistry. He joined Ourisson's lab, working his way to the Ph.D. There, he was in charge of the lab's first NMR spectrometer, and published his first scientific paper, which pointed out an additivity rule for substituent induced shifts of proton NMR signals in steroid derivatives. He obtained his Ph.D., and went to work for a year at Robert Burns Woodward's laboratory at Harvard University, working among other things on the synthesis of vitamin B12.

Career

In 1966, he was appointed a position as maître de conférences (assistant professor) at the Chemistry Department of the University of Strasbourg. His research focused on the physical properties of molecules, synthesizing compounds specifically designed for exhibiting a given property, in order to better understand how that property was related to structure.

In 1968, he achieved the synthesis of cage-like molecules, comprising a cavity inside which another molecule could be lodged. Organic chemistry enabled him to engineer cages with the desired shape, thus only allowing a certain type of molecule to lodge itself in the cage. This was the premise for an entire new field in chemistry, sensors. Such mechanisms also play a great role in molecular biology.

These cryptands, as Lehn dubbed them, became his main center of interest, and led to his definition of a new type of chemistry, "supramolecular chemistry", which instead of studying the bonds inside one molecule, looks at intermolecular attractions, and what would be later called "fragile objects", such as micelles, polymers, or clays.

In 1980, he was elected to become a teacher at the prestigious Collège de France, and in 1987 was awarded the Nobel Prize, alongside Donald Cram and Charles Pedersen for his works on cryptands.

He is currently a member of the Reliance Innovation Council which was formed by Reliance Industries Limited, India.

As of 2021, Lehn has an h-index of 154 according to Google Scholar and of 137 (946 documents) according to Scopus.

Legacy

In 1987, Pierre Boulez dedicated a very short piano work Fragment d‘une ébauche to Lehn on the occasion of his Nobel Prize in Chemistry.

Personal life

Lehn was married in 1965 to Sylvie Lederer, and together they had two sons, David and Mathias.

Lehn is an atheist.

lehn-13388-content-portrait-mobile-tiny.jpg


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#1503 2024-06-07 16:13:08

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 46,724

Re: crème de la crème

1465) Charles J. Pedersen

Summary

Charles J. Pedersen (born October 3, 1904, Pusan, Korea—died October 26, 1989, Salem, New Jersey, U.S.) was an American chemist who, along with Jean-Marie Lehn and Donald J. Cram, was awarded the 1987 Nobel Prize for Chemistry for his synthesis of the crown ethers—a group of organic compounds that would selectively react with other atoms and molecules much as do the molecules in living organisms.

Pedersen was born to a Norwegian father and a Japanese mother. In the early 1920s he went to the United States to study chemical engineering at the University of Dayton in Ohio, where he took a bachelor’s degree. He received a master’s degree in organic chemistry at the Massachusetts Institute of Technology and in 1927 went to work for E.I. du Pont de Nemours & Co. as a research chemist. He worked there for the next 42 years.

In the 1960s Pedersen synthesized a group of compounds that he named crown ethers for their structure—a loose flexible ring of carbon atoms punctuated at regular intervals with oxygen atoms. By varying the size of the rings, he found that crown ethers would bind the ions of certain metal elements at the centre of the “crown.” His discoveries were expanded upon by Lehn and Cram, and the result was the laboratory synthesis of molecules that could selectively react with other molecules in much the same way that enzymes and other natural biological molecules do.

Details

Charles John Pedersen (October 3, 1904 – October 26, 1989) was an American organic chemist best known for discovering crown ethers and describing methods of synthesizing them during his entire 42-year career as a chemist for DuPont at DuPont Experimental Station in Wilmington, Delaware, and at DuPont's Jackson Laboratory in Deepwater, New Jersey. Often associated with Reed McNeil Izatt, Pedersen also shared the Nobel Prize in Chemistry in 1987 with Donald J. Cram and Jean-Marie Lehn. He is the only Nobel Prize laureate born in Korea other than Peace Prize laureate Kim Dae-jung.

Pedersen made countless other discoveries in chemistry, such as discovering and developing metal deactivators. His early investigations also led to the development of a dramatically improved process for manufacturing tetraethyl lead, an important gasoline additive. He also contributed to the development of neoprene.

Early life and education

Born on October 3, 1904, in Busan, Korea, Charles J. Pedersen was the youngest of three children. His father, Brede Pedersen, was a Norwegian marine engineer who immigrated to Korea in order to join the Korean customs service after leaving home due to family issues. Later, he worked as a mechanical engineer at the Unsan County mines in present-day North Korea. His Japanese mother, Takino Yasui, immigrated from Japan to Korea with her family and established a successful line of work by trading soybeans and silkworms located close to the Unsan County mines, where the couple ultimately met. Although not much is mentioned about his elder brother, who died of a childhood disease before Pedersen was born, he had an older sister named Astrid, who was five years older than him. In Japan, he used the Japanese given name Yoshio  which he spelled using the kanji for "good" and "man". According to Pedersen in a separate autobiographical account of his childhood, he had been born prior to the Russo-Japanese War and because his mother had still been grieving over the then-recent death of his older brother, he did not feel welcomed as a child.

Despite living in what is now South Korea, because Pedersen lived in the vicinity of the American-owned Unsan County mines, which spanned approximately 500 square miles in area, he grew up speaking primarily English.

At around 8 years old, Pedersen was sent by his family to study abroad in Nagasaki, Japan and then later transferred to St. Joseph College in Yokohama, Japan.

After successfully completing his education at St. Joseph College, due to the close ties his family had with the Society of Mary (Marianists), Pedersen decided to attend college in America at the University of Dayton in Ohio.

While spending his undergraduate life in 1922 studying chemical engineering at the University of Dayton in Ohio, Pedersen had been a well balanced student who immersed himself in the sports, academic and social aspects of his college. With a passion for the sport of tennis, Pedersen played on his school's varsity tennis team under Coach Frank Kronauge, a former University of Dayton tennis captain. Playing for all four years of his undergraduate years, Pedersen became captain for both of his junior and senior seasons on the team. Furthermore, Pedersen spent his time as both the vice-president of the Engineers' Club as well as in charge of Literary in the Daytonian Editorial Department. Graduating from the University of Dayton in 1926 with a degree in chemical engineering, he was dedicated for his time at the university as well as the various accomplishments he made while studying as an undergraduate.

Earning a bachelor's degree in chemical engineering, Pedersen decided to attend the Massachusetts Institute of Technology in order to obtain a master's degree in organic chemistry. Although his professors at the time encouraged him to stay and pursue a PhD in organic chemistry, Pedersen decided to start his career instead, partially because he no longer wanted to be supported by his father. He is one of the few people to win a Nobel Prize in the sciences without having a PhD.

Du Pont

After leaving the Massachusetts Institute of Technology, Pedersen became employed at the DuPont Company in Wilmington, Delaware, in 1927 through connections from his research advisor, Professor James F. Norris. While at DuPont, Pedersen was able to begin research at the Jackson Laboratory under William S. Calcott and finished his career with DuPont at the Experimental Station in Wilmington, Delaware. As a young chemist at DuPont, Pedersen witnessed and gained inspiration many flourishing chemists such as Julian Hill and Roy J. Plunkett, and also breakthroughs in polymers and work in the field of organic chemistry. Pedersen had a particular interest in industry as he started his focus on his chemical career, which influenced the direction of problems he set out to solve as a chemist. As Pedersen began working on problems as a new chemist, he was free to work on whatever problems fascinated him and he quickly became interested in oxidative degradation and stabilization of substrate. Pedersen's papers and work expanded beyond this, however it was a major influence to his eventual Nobel Prize awarded research.

Retiring at the age of 65, his work resulted in 25 papers and 65 patents, and in 1967, he published two works describing the methods of synthesizing crown ethers (cyclic polyethers). The donut-shaped molecules were the first in a series of extraordinary compounds that form stable structures with alkali metal ions. In 1987, he shared the Nobel Prize in Chemistry for his work in this area with Donald Cram and Jean-Marie Lehn, whom expanded upon his original discoveries. In the whole process of the Nobel Prize winning, the Dupont Company fully supported Pedersen by providing him a full-time public relations man, and a part-time secretary. DuPont Company also utilized their own corporate aircraft to accompany Pedersen and his family, as he could not travel on commercial aircraft.

Discovery of the crown ethers

At around 1960, Pedersen went back to research in the field of Coordination Chemistry, focusing on the synthesis of multidentate ligands. It was recommended by his colleague Herman Schroeder to work on the coordination chemistry of vanadium before working on the polymerization and oxidative catalytic activity of vanadium. It was while working on this research that Pedersen made his discovery of crown ether. Through studying the bio[2-(o-Hydroxyphenoxy)Ethyl] ether, Pedersen accidentally discovered an unknown substances described as a "goo" while purifying the compound. Using ultraviolet–visible spectroscopy to study its reactions with phenol groups, after treating the samples with alkali, although the absorption curve initially showed no changes, it was observed to have shifted to higher absorption readings if one or more of the hydroxy groups were unpaired. Basing further research on this observation, Pedersen then dipped the unknown product in methanol and sodium hydroxide. Although the solution was not soluble in methanol, it became alkaline when in contact with the sodium hydroxide.

Due to not being soluble in methanol, Pedersen then proceeded to treat the methanol with soluble sodium salts, to which the unknown substance became soluble, allowing him to conclude that the solubility was due to sodium ions instead of alkalinity. Since the behavior of this substance mirrored that of 2,3-benzo-1,4,7-trioxacyclononane, with twice the molecular-weight, the unknown molecule was then coined as dibenzo-18-crown-6, the first of the aromatic crown compounds discovered.

Charles-John-Pedersen-1904-1989-was-born-in-Busan-North-Korea-from-a-Norwegian-marine.jpg


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#1504 2024-06-09 16:59:31

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 46,724

Re: crème de la crème

1466) Susumu Tonegawa

Gist

(born 1939). Japanese molecular biologist Tonegawa Susumu was awarded the Nobel Prize for Physiology or Medicine in 1987. He received the award for discovering how genetics plays into the great diversity of antibodies produced by the vertebrate immune system. Tonegawa was born on September 5, 1939, in Nagoya, Japan.

Summary

Tonegawa Susumu (born September 5, 1939, Nagoya, Japan) is a Japanese molecular biologist who was awarded the Nobel Prize for Physiology or Medicine in 1987 for his discovery of the genetic mechanisms underlying the great diversity of antibodies produced by the vertebrate immune system.

Tonegawa earned a B.S. degree from Kyōto University in 1963 and a Ph.D. in molecular biology from the University of California, San Diego, U.S., in 1969. He was a member of the Basel Institute for Immunology in Switzerland from 1971 to 1981. During that time Tonegawa applied the newly devised recombinant DNA techniques of molecular biology to immunology and began to tackle one of the greatest unsolved immunological questions of the day: how antibody diversity is generated. Prior to Tonegawa’s discovery, it was unclear how a limited number of genes—there are believed to be about 100,000 in the human genome—could produce the total human antibody repertoire, which numbers in the trillions. According to Tonegawa’s research, each antibody protein is not encoded by a specific gene, as one theory contended; instead, antibodies are constructed from a relatively small number of gene fragments that are rearranged randomly to generate different antibody molecules.

In 1981 Tonegawa moved to the United States to become a professor of biology at the Center for Cancer Research at the Massachusetts Institute of Technology (MIT). In addition to conducting immunological investigations, Tonegawa studied molecular and cellular aspects of neurobiology, and in 1994 he joined MIT’s Center for Learning and Memory (now the Picower Institute for Learning and Memory). His research focused on the role of the hippocampus in the processes of memory formation and recall. To conduct these studies, Tonegawa developed a genetically engineered mouse model in which the animals were no longer able to produce an enzyme called calcineurin. Calcineurin plays important roles in the immune system and in the brain, where it is associated with receptors that bind chemicals involved in neural synaptic transmission. Tonegawa’s mice unexpectedly displayed symptoms characteristic of schizophrenia. Further studies indicated that genetic variations in the calcineurin gene contribute to the development of schizophrenia in humans. Tonegawa’s mouse model has since been employed for the discovery of pharmacological agents for the treatment of schizophrenia. Tonegawa also identified genes and proteins involved in long-term memory storage, and he developed techniques to facilitate the study of neuronal circuits involved in cognition and behaviour.

Tonegawa received numerous awards throughout his career, including the Louisa Gross Horwitz Prize (1982), the Person of Cultural Merit prize (Bunka Korosha; 1983), conferred by the Japanese government, and the Order of Culture (Bunka Kunsho; 1984).

Details

Susumu Tonegawa (Tonegawa Susumu, born September 5, 1939) is a Japanese scientist who was the sole recipient of the Nobel Prize for Physiology or Medicine in 1987 for his discovery of V(D)J recombination, the genetic mechanism which produces antibody diversity. Although he won the Nobel Prize for his work in immunology, Tonegawa is a molecular biologist by training and he again changed fields following his Nobel Prize win; he now studies neuroscience, examining the molecular, cellular and neuronal basis of memory formation and retrieval.

Early life and education

Tonegawa was born in Nagoya, Japan and attended Hibiya High School in Tokyo. While a student at Kyoto University, Tonegawa became fascinated with operon theory after reading papers by François Jacob and Jacques Monod, whom he credits in part for inspiring his interest in molecular biology. Tonegawa graduated from Kyoto University in 1963 and, due to limited options for molecular biology study in Japan at the time, moved to the University of California, San Diego to do his doctorate study under Dr. Masaki Hayashi. He received his Ph.D. in 1968.

Career

Tonegawa conducted post-doctoral work at the Salk Institute in San Diego in the laboratory of Renato Dulbecco. With encouragement from Dr. Dulbecco, Tonegawa moved to the Basel Institute for Immunology in Basel, Switzerland in 1971, where he transitioned from molecular biology into immunology studies and carried out his landmark immunology studies.

In 1981, Tonegawa became a professor at the Massachusetts Institute of Technology. In 1994, he was appointed as the first Director of the MIT Center for Learning and Memory, which developed under his guidance into The Picower Institute for Learning and Memory. Tonegawa resigned his directorship in 2006 and currently serves as a Picower Professor of Neuroscience and Biology and a Howard Hughes Medical Institute Investigator.

Tonegawa also served as Director of the RIKEN Brain Science Institute from 2009 to 2017.

Research:

Immunology

Tonegawa's Nobel Prize work elucidated the genetic mechanism of the adaptive immune system, which had been the central question of immunology for over 100 years. Prior to Tonegawa's discovery, one early idea to explain the adaptive immune system suggested that each gene produces one protein; however, there are under 19,000 genes in the human body which nonetheless can produce millions of antibodies. In experiments beginning in 1976, Tonegawa showed that genetic material rearranges itself to form millions of antibodies. Comparing the DNA of B cells (a type of white blood cell) in embryonic and adult mice, he observed that genes in the mature B cells of the adult mice are moved around, recombined, and deleted to form the diversity of the variable region of antibodies. This process is known as V(D)J recombination.

In 1983, Tonegawa also discovered a transcriptional enhancer element associated with antibody gene complex, the first cellular enhancer element.

Neuroscience

Shortly following his Nobel Prize in 1990, Tonegawa again changed fields from immunology to neuroscience, where he has focused his research in the ensuing years.

Tonegawa's lab pioneered introductory transgenic and gene-knockout technologies in mammalian systems. He was involved in early work demonstrating the importance of CaMKII- (1992) and the NMDA receptor-dependent synaptic plasticity (1996) in memory formation.

Tonegawa's lab discovered that dendritic neuronal spines in the temporal cortex are a likely target for treatment of Fragile X Syndrome. With one dosage of the inhibitor drug FRAX586, Tonegawa showed a marked reduction of FXS symptoms in the mouse model.

Tonegawa was an early adopter of optogenetics and biotechnology in neuroscience research, leading to his groundbreaking work identifying and manipulating memory engram cells. In 2012, his lab demonstrated that the activation of a specific sub-population of mouse hippocampal neurons, labelled during a fear conditioning paradigm, is sufficient to evoke a behavioral response correlated with a precise memory trace. This demonstrated for the first time that memory information is stored in specific cellular ensembles in the hippocampus, now frequently called memory engram cells.

More recently, his lab continues to employ optogenetic technology and virus injection techniques to expand their findings on the engram cell ensemble. Notably, Tonegawa has uncovered the role of memory engram cell ensembles in memory valence, social memory, as well as their role in brain disorders such as depression, amnesia, and Alzheimer's disease. These works provide proofs of concept for future medical treatments in humans through the manipulation of memory engram ensembles.

Personal life

Tonegawa currently resides in the Boston area with his wife, Mayumi Yoshinari Tonegawa, who worked as an NHK (Japan Broadcasting Corporation) director/interviewer and is now a freelance science writer. The Tonegawas have three children, Hidde Tonegawa, Hanna Tonegawa, and Satto Tonegawa (deceased).

Tonegawa is a fan of the Boston Red Sox, and threw out an opening pitch during their 2004 World Series championship season

Tonegawa-Susumu-e1469216767290-390x300-1.jpeg


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#1505 2024-06-10 17:19:57

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 46,724

Re: crème de la crème

1467) Leon M. Lederman

Gist

In decays of certain elementary particles, neutrinos are produced; particles that occasionally interact with matter to produce electrons. Leon Lederman, Melvin Schwartz, and Jack Steinberger managed to create a beam of neutrinos using a high-energy accelerator. In 1962, they discovered that, in some cases, instead of producing an electron, a muon (200 times heavier than an electron) was produced, proving the existence of a new type of neutrino, the muon neutrino. These particles, collectively called “leptons”, could then be systematically classified in families.

Summary

Leon Max Lederman (born July 15, 1922, New York, New York, U.S.—died October 3, 2018, Rexburg, Idaho) was an American physicist who, along with Melvin Schwartz and Jack Steinberger, received the Nobel Prize for Physics in 1988 for their joint research on neutrinos.

Lederman was educated at the City College of New York (B.S., 1943) and received a Ph.D. in physics from Columbia University, New York City, in 1951. He joined the faculty at Columbia that same year and became a full professor there in 1958. He was director of the Fermi National Accelerator Laboratory in Batavia, Illinois, from 1979 to 1989.

From 1960 to 1962, Lederman, together with his fellow Columbia University researchers Schwartz and Steinberger, collaborated in an important experiment at the Brookhaven National Laboratory on Long Island, New York. There they used a particle accelerator to produce the first laboratory-made beam of neutrinos—elusive subatomic particles that have no detectable mass and no electric charge and that travel at the speed of light. It was already known that when neutrinos interact with matter, either electrons or electron-like particles known as muons (mu mesons) are created. It was not known, however, whether this indicated the existence of two distinct types of neutrinos. The three scientists’ work at Brookhaven established that the neutrinos that produced muons were indeed a distinct (and previously unknown) type of neutrino, one which the scientists named muon neutrinos. The discovery of muon neutrinos subsequently led to the recognition of a number of different “families” of subatomic particles, and this eventually resulted in the standard model, a scheme that has been used to classify all known elementary particles.

Details

Leon Max Lederman (July 15, 1922 – October 3, 2018) was an American experimental physicist who received the Nobel Prize in Physics in 1988, along with Melvin Schwartz and Jack Steinberger, for research on neutrinos. He also received the Wolf Prize in Physics in 1982, along with Martin Lewis Perl, for research on quarks and leptons. Lederman was director emeritus of Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. He founded the Illinois Mathematics and Science Academy, in Aurora, Illinois in 1986, where he was resident scholar emeritus from 2012 until his death in 2018.

An accomplished scientific writer, he became known for his 1993 book The God Particle establishing the popularity of the term for the Higgs boson.

Early life and education

Lederman was born in New York City, New York, to Morris and Minna (Rosenberg) Lederman. His parents were Ukrainian-Jewish immigrants from Kyiv and Odesa. Lederman graduated from James Monroe High School in the South Bronx, and received his bachelor's degree from the City College of New York in 1943.

Lederman enlisted in the United States Army during World War II, intending to become a physicist after his service.  Following his discharge in 1946, he enrolled at Columbia University's graduate school, receiving his Ph.D. in 1951.

Academic career

Lederman became a faculty member at Columbia University, and he was promoted to full professor in 1958 as Eugene Higgins Professor of Physics.  In 1960, on leave from Columbia, he spent time at CERN in Geneva as a Ford Foundation Fellow. He took an extended leave of absence from Columbia in 1979 to become director of Fermilab. Resigning from Columbia (and retiring from Fermilab) in 1989, he then taught briefly at the University of Chicago. He then moved to the physics department of the Illinois Institute of Technology, where he served as the Pritzker Professor of Science. In 1992, Lederman served as president of the American Association for the Advancement of Science.

Lederman, rare for a Nobel Prize winning professor, took it upon himself to teach physics to non-physics majors at The University of Chicago.

Lederman served as president of the board of sponsors of the Bulletin of the Atomic Scientists, and at the time of his death was chair emeritus. He also served on the board of trustees for Science Service, now known as Society for Science & the Public, from 1989 to 1992, and was a member of the JASON defense advisory group. Lederman was also one of the main proponents of the "Physics First" movement. Also known as "Right-side Up Science" and "Biology Last," this movement seeks to rearrange the current high school science curriculum so that physics precedes chemistry and biology.

Lederman was an early supporter of Science Debate 2008, an initiative to get the then-candidates for president, Barack Obama and John McCain, to debate the nation's top science policy challenges. In October 2010, Lederman participated in the USA Science and Engineering Festival's Lunch with a Laureate program where middle and high school students engaged in an informal conversation with a Nobel Prize-winning scientist over a brown-bag lunch. Lederman was also a member of the USA Science and Engineering Festival's advisory board.

Academic work

In 1956, Lederman worked on parity violation in weak interactions. R. L. Garwin, Leon Lederman, and R. Weinrich modified an existing cyclotron experiment, and they immediately verified the parity violation. They delayed publication of their results until after Wu's group was ready, and the two papers appeared back-to-back in the same physics journal. Among his achievements are the discovery of the muon neutrino in 1962 and the bottom quark in 1977. These helped establish his reputation as among the top particle physicists.

In 1977, a group of physicists, the E288 experiment team, led by Lederman announced that a particle with a mass of about 6.0 GeV was being produced by the Fermilab particle accelerator. After taking further data, the group discovered that this particle did not actually exist, and the "discovery" was named "Oops-Leon" as a pun on the original name and Lederman's first name.

As the director of Fermilab, Lederman was a prominent supporter of the Superconducting Super Collider project, which was endorsed around 1983, and was a major proponent and advocate throughout its lifetime. Also at Fermilab, he oversaw the construction of the Tevatron, for decades the world's highest-energy particle collider. Lederman later wrote his 1993 popular science book The God Particle: If the Universe Is the Answer, What Is the Question? – which sought to promote awareness of the significance of such a project – in the context of the project's last years and the changing political climate of the 1990s. The increasingly moribund project was finally shelved that same year after some $2 billion of expenditures. In The God Particle he wrote, "The history of atomism is one of reductionism – the effort to reduce all the operations of nature to a small number of laws governing a small number of primordial objects" while stressing the importance of the Higgs boson.

In 1988, Lederman received the Nobel Prize for Physics along with Melvin Schwartz and Jack Steinberger "for the neutrino beam method and the demonstration of the doublet structure of the leptons through the discovery of the muon neutrino". Lederman also received the National Medal of Science (1965), the Elliott Cresson Medal for Physics (1976), the Wolf Prize for Physics (1982) and the Enrico Fermi Award (1992). In 1995, he received the Chicago History Museum "Making History Award" for Distinction in Science Medicine and Technology.

Personal life

Lederman's best friend during his college years, Martin J. Klein, convinced him of "the splendors of physics during a long evening over many beers". He was known for his sense of humor in the physics community.  On August 26, 2008, Lederman was video-recorded by a science focused organization called ScienCentral, on the street in a major U.S. city, answering questions from passersby. He answered questions such as "What is the strong force?" and "What happened before the Big Bang?".

He had three children with his first wife, Florence Gordon, and toward the end of his life lived with his second wife, Ellen (Carr), in Driggs, Idaho.

Lederman was an atheist. Lederman began to suffer from memory loss in 2011 and, after struggling with medical bills, he had to sell his Nobel medal for $765,000 to cover the costs in 2015. He died of complications from dementia on October 3, 2018, at a care facility in Rexburg, Idaho, at the age of 96.

lederman-13406-portrait-mini-2x.jpg


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#1506 2024-06-12 22:37:52

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 46,724

Re: crème de la crème

1468) Melvin Schwartz

Gist

In decays of certain elementary particles, neutrinos are produced; particles that occasionally interact with matter to produce electrons. Melvin Schwartz, Leon Lederman, and Jack Steinberger managed to create a beam of neutrinos using a high-energy accelerator. In 1962, they discovered that, in some cases, instead of producing an electron, a muon (200 times heavier than an electron) was produced, proving the existence of a new type of neutrino, the muon neutrino. These particles, collectively called “leptons”, could then be systematically classified in families.

Summary

Melvin Schwartz (born Nov. 2, 1932, New York, N.Y., U.S.—died Aug. 28, 2006, Twin Falls, Idaho) was an American physicist and entrepreneur who, along with Leon M. Lederman and Jack Steinberger, received the Nobel Prize for Physics in 1988 for their research concerning neutrinos (subatomic particles that have no electric charge and virtually no mass).

Schwartz studied physics at Columbia University, New York City, and received a Ph.D. there in 1958. He taught at Columbia from 1958 to 1966 and then was a professor of physics at Stanford University, Calif., from 1966 to 1983. In 1970 he founded Digital Pathways, Inc., a company that designed computer-security systems. Schwartz later served as an associate director at Brookhaven National Laboratory (1991–94), and in 1991 he also rejoined the faculty at Columbia, where he became professor emeritus in 2000.

Schwartz received the Nobel Prize for research he and his Columbia colleagues Lederman and Steinberger performed at Brookhaven in 1960–62. Neutrinos almost never interact with matter, and consequently it had been extremely difficult to detect them in laboratory research. (It was estimated that from a sample of 10 billion neutrinos traveling through Earth, only one neutrino would interact with a particle of matter during the entire passage.) Acting on Schwartz’s suggestion, the three researchers devised a way to increase the statistical probability of neutrino interactions by producing a beam consisting of hundreds of billions of neutrinos and sending the beam through a detector of solid matter. To achieve this, the scientists used a particle accelerator to generate a stream of high-energy protons, which were then fired at a target made of the metal beryllium. The bombardment produced a stream of different particles, including those called pions (pi mesons) that, as they traveled, decayed into muons (mu mesons) and neutrinos. The stream of particles exiting from the beryllium target then passed through a steel barrier 13.4 m (44 feet) thick that filtered out all other particles except neutrinos. This pure neutrino beam subsequently entered a large aluminum detector in which a few neutrinos interacted with the aluminum atoms. In analyzing these interactions, the three physicists discovered a new type of neutrino, which came to be known as the muon neutrino.

Schwartz was the recipient of numerous honours, including a Guggenheim Fellowship (1965). In 1975 he was elected to the National Academy of Sciences.

Details

Melvin Schwartz (November 2, 1932 – August 28, 2006) was an American physicist. He shared the 1988 Nobel Prize in Physics with Leon M. Lederman and Jack Steinberger for their development of the neutrino beam method and their demonstration of the doublet structure of the leptons through the discovery of the muon neutrino.[2]

Biography

He was Jewish. He grew up in New York City in the Great Depression and went to the Bronx High School of Science. His interest in physics began there at the age of 12.

He earned his B.A. (1953) and Ph.D. (1958) at Columbia University, where Nobel laureate Isidor Isaac Rabi was the head of the physics department. Schwartz became an assistant professor at Columbia in 1958. He was promoted to associate professor in 1960 and full professor in 1963. Tsung-Dao Lee, a Columbia colleague who had recently won the Nobel prize at age 30, inspired the experiment for which Schwartz received his Nobel. Schwartz and his colleagues performed the experiments which led to their Nobel Prize in the early 1960s, when all three were on the Columbia faculty. The experiment was carried out at the nearby Brookhaven National Laboratory.

In 1966, after 17 years at Columbia, he moved west to Stanford University, where SLAC, a new accelerator, was just being completed. There, he was involved in research investigating the charge asymmetry in the decay of long-lived neutral kaons and another project which produced and detected relativistic hydrogen-like atoms made up of a pion and a muon.

In the 1970s he founded and became president of Digital Pathways. In 1972 he published a textbook on classical electrodynamics that has become a standard reference for intermediate and advanced students for its particularly clear exposition of the basic physical principles of the theory. In 1991, he became Associate Director of High Energy and Nuclear Physics at Brookhaven National Laboratory. At the same time, he rejoined the Columbia faculty as Professor of Physics. He became I. I. Rabi Professor of Physics in 1994 and retired as Rabi Professor Emeritus in 2000. He spent his retirement years in Ketchum, Idaho, and died August 28, 2006, at a Twin Falls, Idaho, nursing home after struggling with Parkinson's disease and hepatitis C.

schwartz-13407-content-portrait-mobile-tiny.jpg


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#1507 2024-06-13 20:48:11

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 46,724

Re: crème de la crème

1469) Jack Steinberger

Summary

Jack Steinberger (born May 25, 1921, Bad Kissingen, Germany—died December 12, 2020, Geneva, Switzerland) was a German-born American physicist who, along with Leon M. Lederman and Melvin Schwartz, was awarded the Nobel Prize for Physics in 1988 for their joint discoveries concerning neutrinos.

Steinberger immigrated to the United States in 1934. He studied physics at the University of Chicago, receiving a Ph.D. there in 1948. He was a professor of physics at Columbia University, New York City, from 1950 to 1971, and from 1968 to 1986 he was a physicist at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland.

In the early 1960s Steinberger, along with his Columbia University colleagues Lederman and Schwartz, devised a landmark experiment in particle physics using the accelerator at the Brookhaven National Laboratory, New York. The three reseachers obtained the first laboratory-made stream of neutrinos—subatomic particles that have no electric charge and virtually no mass. In the process, they discovered a new type of neutrino called a muon neutrino. The high-energy neutrino beams that the three researchers produced became a basic research tool in the study of subatomic particles and nuclear forces. In particular, the use of such beams made possible the study of radioactive-decay processes involving the weak nuclear force, or weak interaction, one of the four fundamental forces in nature.

Details

Jack Steinberger (born Hans Jakob Steinberger; May 25, 1921 – December 12, 2020) was a German-born American physicist noted for his work with neutrinos, the subatomic particles considered to be elementary constituents of matter. He was a recipient of the 1988 Nobel Prize in Physics, along with Leon M. Lederman and Melvin Schwartz, for the discovery of the muon neutrino. Through his career as an experimental particle physicist, he held positions at the University of California, Berkeley, Columbia University (1950–68), and the CERN (1968–86). He was also a recipient of the United States National Medal of Science in 1988, and the Matteucci Medal from the Italian Academy of Sciences in 1990.

Early life and education

Steinberger was born in the city of Bad Kissingen in Bavaria, Germany, on May 25, 1921 into a Jewish family. The rise of Nazism in Germany, with its open anti-Semitism, prompted his parents, Ludwig Lazarus (a cantor and religious teacher) and Berta May Steinberger, to send him out of the country.

Steinberger emigrated to the United States at the age of 13, making the trans-Atlantic trip with his brother Herbert. Jewish charities in the U.S. arranged for Barnett Farroll to care for him as a foster child. Steinberger attended New Trier Township High School, in Winnetka, Illinois. He was reunited with his parents and younger brother in 1938.

Steinberger studied chemical engineering at Armour Institute of Technology (now Illinois Institute of Technology) but left after his scholarship ended to help supplement his family's income. He obtained a bachelor's degree in chemistry from the University of Chicago, in 1942. Shortly thereafter, he joined the Signal Corps at MIT. With the help of the G.I. Bill, he returned to graduate studies at the University of Chicago in 1946, where he studied under Edward Teller and Enrico Fermi. His Ph.D. thesis concerned the energy spectrum of electrons emitted in muon decay; his results showed that this was a three-body decay, and implied the participation of two neutral particles in the decay (later identified as the electron)

and muon (
) neutrinos) rather than one.

Career

Early research

After receiving his doctorate, Steinberger attended the Institute for Advanced Study in Princeton for a year. In 1949 he published a calculation of the lifetime of the neutral pion, which anticipated the study of anomalies in quantum field theory.

Following Princeton, in 1949, Steinberger went to the Radiation Lab at the University of California at Berkeley, where he performed an experiment which demonstrated the production of neutral pions and their decay to photon pairs. This experiment utilized the 330 MeV synchrotron and the newly invented scintillation counters. Despite this and other achievements, he was asked to leave the Radiation Lab at Berkeley in 1950, due to his refusal to sign the so-called non-Communist Oath.

Steinberger accepted a faculty position at Columbia University in 1950. The newly commissioned meson beam at Nevis Labs provided the tool for several important experiments. Measurements of the production cross-section of pions on various nuclear targets showed that the pion has odd parity. A direct measurement of the production of pions on a liquid hydrogen target, then not a common tool, provided the data needed to show that the pion has spin zero. The same target was used to observe the relatively rare decay of neutral pions to a photon, an electron, and a positron. A related experiment measured the mass difference between the charged and neutral pions based on the angular correlation between the neutral pions produced when the negative pion is captured by the proton in the hydrogen nucleus. Other important experiments studied the angular correlation between electron–positron pairs in neutral pion decays, and established the rare decay of a charged pion to an electron and neutrino; the latter required use of a liquid-hydrogen bubble chamber.

Investigations of strange particles

During 1954–1955, Steinberger contributed to the development of the bubble chamber with the construction of a 15 cm device for use with the Cosmotron at Brookhaven National Laboratory. The experiment used a pion beam to produce pairs of hadrons with strange quarks to elucidate the puzzling production and decay properties of these particles. In 1956, he used a 30 cm chamber outfitted with three cameras to discover the neutral Sigma hyperon and measure its mass. This observation was important for confirming the existence of the SU(3) flavor symmetry which hypothesizes the existence of the strange quark.

An important characteristic of the weak interaction is its violation of parity symmetry. This characteristic was established through the measurement of the spins and parities of many hyperons. Steinberger and his collaborators contributed several such measurements using large (75 cm) liquid-hydrogen bubble chambers and separated hadron beams at Brookhaven. One example is the measurement of the invariant mass distribution of electron–positron pairs produced in the decay of Sigma-zero hyperons to Lambda-zero hyperons.

Neutrinos and the weak neutral current

In the 1960s, the emphasis in the study of the weak interaction shifted from strange particles to neutrinos. Leon Lederman, Steinberger and Schwartz built large spark chambers at Nevis Labs and exposed them in 1961 to neutrinos produced in association with muons in the decays of charged pions and kaons. They used the Alternating Gradient Synchrotron (AGS) at Brookhaven, and obtained a number of convincing events in which muons were produced, but no electrons. This result, for which they received the Nobel Prize in 1988, proved the existence of a type of neutrino associated with the muon, distinct from the neutrino produced in beta decay.

Study of CP violation

The CP violation (charge conjugation and parity) was established in the neutral kaon system in 1964. Steinberger recognized that the phenomenological parameter epsilon which quantifies the degree of CP violation could be measured in interference phenomena. In collaboration with Carlo Rubbia, he performed an experiment while on sabbatical at CERN during 1965 which demonstrated robustly the expected interference effect, and also measured precisely the difference in mass of the short-lived and long-lived neutral kaon masses.

Back in the United States, Steinberger conducted an experiment at Brookhaven to observe CP violation in the semi-leptonic decays of neutral kaons. The charge asymmetry relates directly to the epsilon parameter, which was thereby measured precisely. This experiment also allowed the deduction of the phase of epsilon, and confirmed that CPT is a good symmetry of nature.

CERN

In 1968, Steinberger left Columbia University and accepted a position as a department director at CERN. He constructed an experiment there utilizing multi-wire proportional chambers (MWPC), recently invented by Georges Charpak. The MWPCs, augmented by micro-electronic amplifiers, allowed much larger samples of events to be recorded. Several results for neutral kaons were obtained and published in the early 1970s, including the observation of the rare decay of the neutral kaon to a muon pair, the time dependence of the asymmetry for semi-leptonic decays, and a more-precise measurement of the neutral kaon mass difference. A new era in experimental technique was opened.

These new techniques proved crucial for the first demonstration of direct CP-violation. The NA31 experiment at CERN was built in the early 1980s using the CERN SPS 400 GeV proton synchrotron. As well as banks of MWPCs and a hadron calorimeter, it featured a liquid argon electromagnetic calorimeter with exceptional spatial and energy resolution. NA31 showed that direct CP violation is real.

Steinberger worked on the ALEPH experiment at the Large Electron–Positron Collider (LEP), where he served as the experiment's spokesperson. Among the ALEPH experiment's initial accomplishments was the precise measurement of the number of families of leptons and quarks in the Standard Model through the measurement of the decays of the Z boson.

He retired from CERN in 1986, and went on to become a professor at the Scuola Normale Superiore di Pisa in Italy. He continued his association with the CERN laboratory through his visits into his 90s.

Nobel Prize

Steinberger was awarded the Nobel Prize in Physics in 1988, "for the neutrino beam method and the demonstration of the doublet structure of the leptons through the discovery of the muon neutrino". He shared the prize with Leon M. Lederman and Melvin Schwartz; at the time of the research, all three experimenters were at Columbia University.

The experiment used charged pion beams generated with the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The pions decayed to muons which were detected in front of a steel wall; the neutrinos were detected in spark chambers installed behind the wall. The coincidence of muons and neutrinos demonstrated that a second kind of neutrino was created in association with muons. Subsequent experiments proved this neutrino to be distinct from the first kind (electron-type). Steinberger, Lederman and Schwartz published their work in Physical Review Letters in 1962.

He gave his Nobel medal to New Trier High School in Winnetka, Illinois (USA), of which he was an alumnus.

He was also awarded the National Medal of Science in 1988, by the then US president, Ronald Reagan and was the recipient of the Matteucci Medal in 1990, from the Italian Academy of Sciences.

32327___personal-picture-of-jack-steinberger.jpg?12052014_1600


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#1508 2024-06-14 20:06:28

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 46,724

Re: crème de la crème

1470) Johann Deisenhofer

Gist

One of the most fundamental processes of life is photosynthesis, which uses energy from sunlight to make carbohydrates out of water and carbon dioxide. The energy conversion takes place through the transportation of electrons via a number of proteins that are attached to special membranes in the cell. In 1983 Johann Deisenhofer, Hartmut Michel and Robert Huber determined the structure for the photosynthetic reaction center.

Summary

Johann Deisenhofer (born September 30, 1943, Zusamaltheim, Germany) is a German American biochemist who, along with Hartmut Michel and Robert Huber, received the Nobel Prize for Chemistry in 1988 for their determination of the structure of certain proteins that are essential to photosynthesis.

Deisenhofer earned a doctorate from the Max Planck Institute for Biochemistry in Martinsried, West Germany, in 1974. He conducted research there until 1988, when he joined the scientific staff at the Howard Hughes Medical Institute in Dallas, Texas. That year he also began teaching at the University of Texas Southwestern Medical Center. In 2001 Deisenhofer became a U.S. citizen.

Together with Michel and Huber, Deisenhofer set out to study the structure of a protein complex found in certain photosynthetic bacteria. This protein, called a photosynthetic reaction centre, was known to play a crucial role in initiating a simple type of photosynthesis. Between 1982 and 1985, the three scientists used X-ray crystallography to determine the exact arrangement of the more than 10,000 atoms that make up the protein complex. Their research increased the general understanding of the mechanisms of photosynthesis and revealed similarities between the photosynthetic processes of plants and bacteria.

Details

Johann Deisenhofer (born September 30, 1943) is a German biochemist who, along with Hartmut Michel and Robert Huber, received the Nobel Prize for Chemistry in 1988 for their determination of the first crystal structure of an integral membrane protein, a membrane-bound complex of proteins and co-factors that is essential to photosynthesis.

Early life and education

Born in Bavaria, Deisenhofer earned his doctorate from the Technical University of Munich for research work done at the Max Planck Institute of Biochemistry in Martinsried, West Germany, in 1974. He conducted research there until 1988, when he joined the scientific staff of the Howard Hughes Medical Institute and the faculty of the Department of Biochemistry at The University of Texas Southwestern Medical Center at Dallas.

Career

Together with Michel and Huber, Deisenhofer determined the three-dimensional structure of a protein complex found in certain photosynthetic bacteria. This membrane protein complex, called a photosynthetic reaction center, was known to play a crucial role in initiating a simple type of photosynthesis. Between 1982 and 1985, the three scientists used X-ray crystallography to determine the exact arrangement of the more than 10,000 atoms that make up the protein complex. Their research increased the general understanding of the mechanisms of photosynthesis and revealed similarities between the photosynthetic processes of plants and bacteria.

Deisenhofer currently serves on the board of advisors of Scientists and Engineers for America, an organization focused on promoting sound science in American government. In 2003 he was one of 22 Nobel Laureates who signed the Humanist Manifesto. He is currently a professor at the Department of Biophysics at the University of Texas Southwestern Medical Center.

deisenhofer-13396-portrait-mini-2x.jpg


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#1509 2024-06-15 17:37:09

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 46,724

Re: crème de la crème

1471) Robert Huber

Gist

One of the most fundamental processes of life is photosynthesis, which uses energy from sunlight to make carbohydrates out of water and carbon dioxide. The energy conversion takes place through the transportation of electrons via a number of proteins that are attached to special membranes in the cell. In 1983 Robert Huber, Johann Deisenhofer and Hartmut Michel determined the structure for the photosynthetic reaction center.

Summary

Robert Huber (born Feb. 20, 1937, Munich, Ger.) is a German biochemist who, along with Johann Deisenhofer and Hartmut Michel, received the Nobel Prize for Chemistry in 1988 for their determination of the structure of a protein complex that is essential to photosynthesis in bacteria.

Huber received his doctorate from the Munich Technical University. In 1972 he joined the staff of the Max Planck Institute for Biochemistry at Martinsried, Ger., where he conducted his award-winning research with Deisenhofer and Michel. He alternately worked there and at the Munich Technical University.

Huber was an internationally recognized expert in the use of X-ray diffraction to determine the atomic structure of complex molecules such as proteins. Once a protein has been reduced to a pure crystalline form, its atomic structure can be deduced by analyzing the manner in which the crystal’s atoms scatter a beam of X rays. Huber and his colleagues used this technique to determine the structure of a protein complex (called a photosynthetic reaction centre) that is essential to photosynthesis in certain bacteria. By 1985 the three scientists had succeeded in describing the complete atomic structure of the protein. Although bacterial photosynthesis is somewhat simpler than that carried on by plants, the scientists’ work significantly increased the understanding of the mechanisms of photosynthesis in general.

Details

Robert Huber (born 20 February 1937) is a German biochemist and Nobel laureate. known for his work crystallizing an intramembrane protein important in photosynthesis and subsequently applying X-ray crystallography to elucidate the protein's structure.

Education and early life

He was born on 20 February 1937 in Munich where his father, Sebastian, was a bank cashier. He was educated at the Humanistisches Karls-Gymnasium from 1947 to 1956 and then studied chemistry at the Technische Hochschule, receiving his diploma in 1960. He stayed, and did research into using crystallography to elucidate the structure of organic compounds.

Career

In 1971 he became a director at the Max Planck Institute for Biochemistry where his team developed methods for the crystallography of proteins.

In 1988 he received the Nobel Prize for Chemistry jointly with Johann Deisenhofer and Hartmut Michel. The trio were recognized for their work in first crystallizing an intramembrane protein important in photosynthesis in purple bacteria, and subsequently applying X-ray crystallography to elucidate the protein's structure. The information provided the first insight into the structural bodies that performed the integral function of photosynthesis. This insight could be translated to understand the more complex analogue of photosynthesis in cyanobacteria which is essentially the same as that in chloroplasts of higher plants.

In 2006, he took up a post at the Cardiff University to spearhead the development of Structural Biology at the university on a part-time basis.

Since 2005 he has been doing research at the Center for medical biotechnology of the University of Duisburg-Essen.

Huber was one of the original editors of the Encyclopedia of Analytical Chemistry.

Awards and honours

In 1977 Huber was awarded the Otto Warburg Medal. In 1988 he was awarded the Nobel Prize and in 1992 the Sir Hans Krebs Medal. Huber was elected a member of Pour le Mérite for Sciences and Arts, in 1993  and Foreign Member of the Royal Society (ForMemRS) in 1999. His certificate of election reads:

Huber has built up, led and still leads the most productive protein crystallography laboratory in Europe. His own contributions to crystallography, made over a period of some 25 years, are prodigious. For his PhD thesis he solved the chemical formula of the important insect hormone edtyson which had eluded the chemists. He then demonstrated that the tertiary fold of the polypeptide chain in the haemoglobin of the fly larva chironomus closely resembled that in Kendrew's sperm whale myoglobin, indicating for the first time that this fold had been preserved throughout evolution.

Huber's next achievement was the solution of the structure of trypsin inhibitor and the demonstration that in its complex with trypsin it mimicked the tetrahedral transition state of the enzyme's substrate. Since then he has determined the structures of many other proteinases, their inactive precursors and their inhibitors, and has established himself as the world authority in this field. Outstanding structures are those of procarboxypeptidase, which led to the discovery of the remarkable activation mechanism of this enzyme, and of the complex of thrombin with hirudin, which showed the molecular mechanism of inhibition of blood clotting by this leech toxin.

In parallel with this work, Huber solved the structures of several immunoglobulin fragments. He was the first to determine the structure of the complement-activating F-fragment, which was also the first variable and the first constant domains in Fab-fragments.

Huber's structure of citrate synthase revealed a striking example of a conformational change undergone by an enzyme on combination with its substrate by a process of induced fit. Huber shared the Nobel Prize for Chemistry in 1988 with Michel and Deisenhofer for their determination of the remarkable and supremely important structures of the photochemical reaction centre of Rhodopseudomonas viridis and of phycocyanin, the light harvesting protein of the blue-green alga Mastiglocadus laminosus. This protein binds linear tetrapyrroles in a tertiary fold reminiscent of the globins, which brought Huber back full circle to his first structure, erythrocruerin, Huber has also determined the structures of several copper-containing electron-transfer proteins, including that of ascorbate oxidase, and of other metallo-enzymes. These studies have thrown new light on electron-transfer systems and on zinc coordination in proteins. He has also solved the structure of an important class of calcium binding proteins – the annexins. Finally his very accurate structures have provided important insights into the different degrees of mobility within protein molecules.

Huber has published some 400 papers.

Personal life

Huber is married and has four children.

huber-13397-portrait-mini-2x.jpg


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#1510 2024-06-16 19:39:27

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 46,724

Re: crème de la crème

1472) Hartmut Michel

Gist

One of the most fundamental processes of life is photosynthesis, which uses energy from sunlight to make carbohydrates out of water and carbon dioxide. Hartmut Michel studied a bacterium that performs photosynthesis like green plants. The energy conversion takes place through the transportation of electrons via a number of proteins that are attached to special membranes in the cell. In 1982 Michel succeeded in crystallizing these types of proteins. The follow year he, along with Johann Deisenhofer and Robert Huber, determined the structure for the photosynthetic reaction center.

Summary

Hartmut Michel (born July 18, 1948, Ludwigsburg, Germany) is a German biochemist who, along with Johann Deisenhofer and Robert Huber, received the Nobel Prize for Chemistry in 1988 for their determination of the structure of certain proteins that are essential for photosynthesis.

Michel earned his doctorate from the University of Würzburg in 1977. In 1979 he joined the staff of the Max Planck Institute for Biochemistry in Martinsried, West Germany, where he conducted his award-winning research. In 1987 he became head of the Department of Molecular Membrane Biology at the Max Planck Institute for Biophysics in Frankfurt am Main.

It was Michel’s preliminary work, done in the period from 1978 to 1982, that cleared the way for the three scientists’ joint research. They wanted to determine the three-dimensional structure of a four-protein complex (called a photosynthetic reaction centre) that is crucial to the process of photosynthesis in certain bacteria. Michel performed the hitherto impossible feat of crystallizing the membrane-bound protein complex to a pure crystalline form, thus making it possible to determine the protein’s structure atom-by-atom by means of X-ray diffraction techniques.

Details

Hartmut Michel (born 18 July 1948) is a German biochemist, who received the 1988 Nobel Prize in Chemistry for determination of the first crystal structure of an integral membrane protein, a membrane-bound complex of proteins and co-factors that is essential to photosynthesis.

Education and early life

He was born on 18 July 1948 in Ludwigsburg. After compulsory military service, he studied biochemistry at the University of Tübingen, working for his final year at Dieter Oesterhelt's laboratory on ATPase activity of halobacteria.

Career and research

Hartmut later worked on the crystallisation of membrane proteins – essential for their structure elucidation by X-ray crystallography. He received the Nobel Prize jointly with Johann Deisenhofer and Robert Huber in 1988. Together with Michel and Huber, Deisenhofer determined the three-dimensional structure of a protein complex found in certain photosynthetic bacteria. This membrane protein complex, called a photosynthetic reaction center, was known to play a crucial role in initiating a simple type of photosynthesis. Between 1982 and 1985, the three scientists used X-ray crystallography to determine the exact arrangement of the more than 10,000 atoms that make up the protein complex. Their research increased the general understanding of the mechanisms of photosynthesis, revealed similarities between the photosynthetic processes of plants and bacteria and established a methodology for crystallising membrane proteins.

Since 1987 he has been director of the Molecular Membrane Biology department at the Max Planck Institute for Biophysics in Frankfurt am Main, Germany, and professor of biochemistry at the Goethe University Frankfurt.

Awards and honours

In 1986, he received the Gottfried Wilhelm Leibniz Prize of the Deutsche Forschungsgemeinschaft, which is the highest honour awarded in German research. In 1988, he received the Nobel Prize in Chemistry. He received the Bijvoet Medal at the Bijvoet Center for Biomolecular Research of Utrecht University in 1989. In 1995 he became a member of the German Academy of Sciences Leopoldina. He also became a foreign member of the Royal Netherlands Academy of Arts and Sciences in 1995. He was elected a Foreign Member of the Royal Society (ForMemRS) in 2005.

michel-13398-portrait-mini-2x.jpg


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#1511 2024-06-18 18:35:17

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 46,724

Re: crème de la crème

1473) James Black (pharmacologist)

Gist

Many of the body's processes are controlled by substances known as hormones. These are absorbed by the cells of receptors on the cell’s surface. The hormone adrenaline causes the heart to pump harder and blood pressure to rise. At the beginning of the 1960s, James Black developed the drug propranolol, which is a beta-blocker that has a calming effect on the heart by blocking the receptor for adrenaline. At the beginning of the 1970s he developed the drug Cimetidine that suppresses the formation of gastric acid and is used to fight ulcers.

Summary

Sir James Black (born June 14, 1924, Uddingston, Scot.—died March 21, 2010) was a Scottish pharmacologist who, along with George H. Hitchings and Gertrude B. Elion, received the Nobel Prize for Physiology or Medicine in 1988 for his development of two important drugs, propranolol and cimetidine.

Black earned a medical degree from the University of St. Andrews in Scotland in 1946. He taught at various universities for the next 10 years and then joined Imperial Chemical Industries as a senior pharmacologist in 1958. He became head of biological research at Smith Kline & French Laboratories in 1964, and he joined the Wellcome Research Laboratories as director of therapeutic research in 1978. From 1984 he was professor of analytical pharmacology at King’s College, London, becoming emeritus in 1993. From 1992 to 2006 Black served as chancellor of the University of Dundee in Scotland, and, in honour of his work, the university built the Sir James Black Centre, a research facility for the investigation of cancer, tropical diseases, and diabetes. Knighted in 1981, Black became a member of the Order of Merit in 2000.

Black’s drug discoveries arose out of his systematic research on the interactions between certain cell receptors in the body and chemicals in the bloodstream that attach to them. Black wanted to find a drug that would relieve angina pectoris—i.e., the spasms of intense pain felt in the chest when the heart is not receiving enough oxygen.

It was known that beta receptors in the heart muscle, when stimulated by the hormones epinephrine and norepinephrine, cause the heartbeat to quicken and increase the strength of the heart’s contractions, thus increasing that organ’s oxygen requirement. Black developed a drug that would block the beta receptor sites, thus preventing epinephrine and norepinephrine from attaching to them. The resulting inhibition of the hormones’ excitatory effects reduced the heart’s demand for oxygen and could thus help relieve anginal pain. Other beta-blocking agents were subsequently developed to treat heart attacks, hypertension, migraines, and other conditions.

Black used a similar approach to develop a drug treatment for stomach and duodenal ulcers, which are largely caused by the stomach’s oversecretion of gastric acids. He developed a drug that could block the histamine receptors that stimulate the secretion of gastric acid in the stomach, and the new drug, cimetidine, revolutionized the treatment of gastric and duodenal ulcers.

Details

Sir James Whyte Black (14 June 1924 – 22 March 2010) was a Scottish physician and pharmacologist. Together with Gertrude B. Elion and George H. Hitchings, he shared the Nobel Prize for Medicine in 1988 for pioneering strategies for rational drug-design, which, in his case, lead to the development of propranolol and cimetidine. Black established a Veterinary Physiology department at the University of Glasgow, where he became interested in the effects of adrenaline on the human heart. He went to work for ICI Pharmaceuticals in 1958 and, while there, developed propranolol, a beta blocker used for the treatment of heart disease. Black was also responsible for the development of cimetidine, an H2 receptor antagonist, a drug used to treat stomach ulcers.

Early life and education

Black was born on 14 June 1924 in Uddingston, Lanarkshire, the fourth of five sons of a Baptist family which traced its origins to Balquhidder, Perthshire. His father was a mining engineer. He was brought up in Fife, educated at Beath High School, Cowdenbeath, and, at the age of 15, won a scholarship to the University of St Andrews. His family had been too poor to send him to university and he had been persuaded to sit the St Andrews entrance exam by his maths teacher at Beath.

Until 1967, University College, Dundee was the site for all clinical medical activity for the University of St Andrews. He matriculated at University College (which eventually became the University of Dundee) in 1943 and graduated from University of St Andrews School of Medicine with an MB ChB in 1946. During his time at St Andrews, Black lived in St Salvator's Hall.

After graduating, he stayed at University College to join the physiology department as an assistant lecturer before taking a lecturer position at King Edward VII College of Medicine in Singapore that subsequently became part of the University of Malaya. Black had decided against a career as a medical practitioner as he objected to what he considered the insensitive treatment of patients at the time.

Career

Black had large debts upon his graduation from university, so he took a teaching job in Singapore for three years, before moving to London in 1950 and then on to join the University of Glasgow (Veterinary School) where he established the Veterinary Physiology Department and developed an interest in the way adrenaline affects the human heart, particularly in those suffering from angina. Having formulated a theory of an approach by which the effects of adrenaline might be annulled, he joined ICI Pharmaceuticals in 1958, remaining with the company until 1964, during which time he invented propranolol, which later became the world's best-selling drug. During this time Black pioneered a method of research whereby drug molecules were purposefully built instead of being synthesised first and then investigated for their potential medical uses. The discovery of propranolol was hailed as the greatest breakthrough in the treatment of heart disease since the discovery of digitalis.

At the same time, Black was developing a similar method of inventing drugs for treatment of stomach ulcers, but ICI did not wish to pursue the idea so Black resigned in 1964 and joined Smith, Kline and French where he worked for nine years until 1973. While there, Black developed his second major drug, cimetidine, which was launched under the brand name Tagamet in 1975 and soon outsold propranolol to become the world's largest-selling prescription drug.

Black was appointed professor, and head of department, of pharmacology at University College London in 1973 where he established a new undergraduate course in medicinal chemistry but he became frustrated by the lack of funding for research and accepted the post of director of therapeutic research at the Wellcome Research Laboratories in 1978. However he did not agree with his immediate boss there, Sir John Vane, and resigned in 1984. Black then became Professor of Analytical Pharmacology at the Rayne Institute of King's College London medical school, where he remained until 1992. He established the James Black Foundation in 1988 with funding from Johnson & Johnson and led a team of 25 scientists in drugs research, including work on gastrin inhibitors which can prevent some stomach cancers.

Black contributed to basic scientific and clinical knowledge in cardiology, both as a physician and as a basic scientist. His invention of propranolol, the beta adrenergic receptor antagonist that revolutionised the medical management of angina pectoris, is considered to be one of the most important contributions to clinical medicine and pharmacology of the 20th century. Propranolol has been described as the greatest breakthrough in heart disease treatments since the 18th century discovery of digitalis and has benefited millions of people. Black's method of research, his discoveries about adrenergic pharmacology, and his clarification of the mechanisms of cardiac action are all strengths of his work.

He was greatly involved in the synthesis of cimetidine, at the time a revolutionary drug for the treatment and prevention of peptic ulcers. Cimetidine was the first of a new class of drugs, the H2-receptor antagonists.

Chancellor of the University of Dundee

In 1980, Black's association with the University of Dundee was renewed when the institution recognised his many achievements by conferring him with the Honorary Degree of Doctor of Laws. In 1992 he accepted an offer to succeed the 16th Earl of Dalhousie as Chancellor of the University and was installed as Chancellor at the award ceremony held in Dundee Repertory Theatre on 29 April 1992. Appropriately the first degree he conferred was to Professor Robert Campbell Garry, who had been responsible for his original appointment at University College Dundee. Sir James remarked at this ceremony that by returning to Dundee he was "in a real sense, coming
home".

As Chancellor, Sir James Black did much to promote the University of Dundee and was a popular figure within the University. He was awarded a second honorary degree, that of Doctor of Science, in 2005. He retired from his post the following year, and his association with the University of Dundee was marked with launching of the £20 million Sir James Black Centre. The centre, intended to promote interdisciplinary research in the life sciences, was opened by Sydney Brenner in 2006. Sir James Black himself visited the centre in October 2006 and was reportedly excited and pleased by what he saw.

A portrait of Black in his chancellor's robes, by Helene Train, is held as part of the University's fine art collection. The portrait is currently displayed in the foyer of the Sir James Black Centre.

Sir_James_W._Black-231x300.png


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#1512 2024-06-20 21:08:31

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 46,724

Re: crème de la crème

1474) Gertrude B. Elion

Gist

Life

Gertrude Elion was born in New York. When, as a teenager, she watched her maternal grandfather die of cancer, Elion decided to devote her life to fighting the disease. She studied chemistry at Hunter College and New York University, but, as a woman, had difficulty finding work as a chemist. During World War II a lack of chemists arose because many men had joined the war, which led Elion to find work at a laboratory. In the mid-1940s she moved to Burroughs Wellcome's research laboratory, now GlaxoSmithKline, where she remained until her death.

Work

Gertrude Elion's research revolutionized both the development of new pharmaceuticals and the field of medicine in general. Previously, pharmaceuticals had primarily been produced from natural substances. During the 1950s, Elion, together with George Hitchings, developed a systematic method for producing drugs based on knowledge of biochemistry and diseases. One of the first drugs produced by the pair was for leukemia and helped many children with the disease to survive. Other drugs they created have been used to fight malaria, infections, and gout, as well as help with organ transplantations.

Summary

Gertrude B. Elion (born Jan. 23, 1918, New York, N.Y., U.S.—died Feb. 21, 1999, Chapel Hill, N.C.) was an American pharmacologist who, along with George H. Hitchings and Sir James W. Black, received the Nobel Prize for Physiology or Medicine in 1988 for their development of drugs used to treat several major diseases.

Elion was the daughter of immigrants. She graduated from Hunter College in New York City with a degree in biochemistry in 1937. Unable to obtain a graduate research position because she was a woman, she found work as a lab assistant at the New York Hospital School of Nursing (1937), an assistant organic chemist at the Denver Chemical Manufacturing Company (1938–39), a chemistry and physics teacher in New York City high schools (1940–42), and a research chemist at Johnson & Johnson (1943–44). During this time she also took classes at New York University (M.S., 1941). Unable to devote herself to full-time studies, Elion never received a Ph.D.

In 1944 Elion joined the Burroughs Wellcome Laboratories (later part of Glaxo Wellcome; today known as GlaxoSmithKline). There she was first the assistant and then the colleague of Hitchings, with whom she worked for the next four decades. Elion and Hitchings developed an array of new drugs that were effective against leukemia, autoimmune disorders, urinary-tract infections, gout, malaria, and viral herpes. Their success was due primarily to their innovative research methods, which marked a radical departure from the trial-and-error approach taken by previous pharmacologists. Elion and Hitchings pointedly examined the difference between the biochemistry of normal human cells and those of cancer cells, bacteria, viruses, and other pathogens (disease-causing agents). They then used this information to formulate drugs that could kill or inhibit the reproduction of a particular pathogen, leaving the human host’s normal cells undamaged. The two researchers’ new emphasis on understanding basic biochemical and physiological processes enabled them to eliminate much guesswork and wasted effort typical previously in developing new therapeutic drugs.

Though Elion officially retired in 1983, she helped oversee the development of azidothymidine (AZT), the first drug used in the treatment of AIDS. In 1991 she was awarded a National Medal of Science and was inducted into the National Women’s Hall of Fame.

Details

Gertrude Belle Elion (January 23, 1918 – February 21, 1999) was an American biochemist and pharmacologist, who shared the 1988 Nobel Prize in Physiology or Medicine with George H. Hitchings and Sir James Black for their use of innovative methods of rational drug design for the development of new drugs. This new method focused on understanding the target of the drug rather than simply using trial-and-error. Her work led to the creation of the anti-retroviral drug AZT, which was the first drug widely used against AIDS. Her well known works also include the development of the first immunosuppressive drug, azathioprine, used to fight rejection in organ transplants, and the first successful antiviral drug, acyclovir (ACV), used in the treatment of herpes infection.

Early life and education

Elion was born in New York City on January 23, 1918, to parents Robert Elion, a Lithuanian Jewish immigrant and a dentist, and Bertha Cohen, a Polish Jewish immigrant. Her family lost their wealth after the Wall Street Crash of 1929.  Elion was an excellent student who graduated from Walton High School at the age of 15. When she was 15, her grandfather died of stomach cancer, and being with him during his last moments inspired Elion to pursue a career in science and medicine in college. She was Phi Beta Kappa at Hunter College, which she was able to attend for free due to her grades, graduating summa cum laude in 1937 with a degree in chemistry. Unable to find a paying research job after graduating because she was female, Elion worked as a secretary and high school teacher before working in an unpaid position at a chemistry lab. Eventually, she saved up enough money to attend New York University and she earned her M.Sc. in 1941, while working as a high school teacher during the day. In an interview after receiving her Nobel Prize, she stated that she believed the sole reason she was able to further her education as a young female was because she was able to attend Hunter College for free. Her fifteen financial aid applications for graduate school were turned down due to gender bias, so she enrolled in a secretarial school, where she attended only six weeks before she found a job.

Unable to obtain a graduate research position, she worked as a food quality supervisor at A&P supermarkets  and for a food lab in New York, testing the acidity of pickles and the color of egg yolk going into mayonnaise. She moved to a position at Johnson & Johnson that she hoped would be more promising, but ultimately involved testing the strength of sutures. In 1944, she left to work as an assistant to George H. Hitchings at the Burroughs-Wellcome pharmaceutical company (now GlaxoSmithKline) in Tuckahoe, New York. Hitchings was using a new way of developing drugs, by intentionally imitating natural compounds instead of through trial and error. Specifically, he was interested in synthesizing antagonists to nucleic acid derivatives, with the goal that these antagonists would integrate into biological pathways. He believed that if he could trick cancer cells into accepting artificial compounds for their growth, they could be destroyed without also destroying normal cells. Elion synthesized anti-metabolites of purines, and in 1950, she developed the anti-cancer drugs tioguanine and mercaptopurine.

She pursued graduate studies at night school at New York University Tandon School of Engineering (then Brooklyn Polytechnic Institute), but after several years of long-range commuting, she was informed that she would no longer be able to continue her doctorate on a part-time basis, but would need to give up her job and go to school full-time. Elion made a critical decision in her life, and stayed with her job and give up the pursuit of her doctorate. She never obtained a formal Ph.D., but was later awarded an honorary Ph.D. from New York University Tandon School of Engineering (then Polytechnic University of New York) in 1989 and an honorary S.D. degree from Harvard University in 1998.

Personal life

Soon after graduating from Hunter College, Elion met Leonard Canter, an outstanding statistics student at City College of New York (CCNY). They planned to marry, but Leonard became ill. On June 25, 1941, he died from bacterial endocarditis, an infection of his heart valves. In her Nobel interview, she stated that this furthered her drive to become a research scientist and pharmacologist.

Elion never married or had children. However, her brother, whom she was close with, married and had three sons and a daughter that she took pride in being able to watch grow. She listed her hobbies as photography, travel, opera and ballet, and listening to music. After Burroughs Wellcome moved to Research Triangle Park in North Carolina, Elion moved to nearby Chapel Hill. She retired in 1983 from Burroughs Wellcome to spend more time traveling and attending the opera. She continued to make important scientific contributions after her retirement. One of her passions during this time was encouraging other women to pursue careers in science.

Gertrude Elion died in North Carolina in 1999, aged 81.

Career and research

While Elion had many jobs to support herself and put herself through school, Elion had also worked for the National Cancer Institute, American Association for Cancer Research, and World Health Organization, among other organizations. From 1967 to 1983, she was the head of the department of experimental therapy for Burroughs Wellcome. She officially retired from Burroughs and Wellcome in 1983.

She was affiliated with Duke University as adjunct professor of pharmacology and of experimental medicine from 1971 to 1983 and research professor from 1983 to 1999. During her time at Duke, she focused on mentoring medical and graduate students. She published more than 25 papers with the students she mentored at Duke.

Even after her retirement from Burroughs Wellcome, Gertrude continued almost full-time work at the lab. She played a significant role in the development of AZT, one of the first drugs used to treat HIV and AIDS. She also was crucial in the development of nelarabine, which she worked on until her death in 1999.

Rather than relying on trial and error, Elion and Hitchings discovered new drugs using rational drug design, which used the differences in biochemistry and metabolism between normal human cells and pathogens (disease-causing agents such as cancer cells, protozoa, bacteria, and viruses) to design drugs that could kill or inhibit the reproduction of particular pathogens without harming human cells. The drugs they developed are used to treat a variety of maladies, such as leukemia, malaria, lupus, hepatitis, arthritis, gout, organ transplant rejection (azathioprine), as well as herpes (acyclovir, which was the first selective and effective drug of its kind). Most of Elion's early work came from the use and development of purine derivatives.

elion-13403-portrait-mini-2x.jpg


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

Board footer

Powered by FluxBB