Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 2016-01-24 15:49:54

mr.wong
Member
Registered: 2015-12-01
Posts: 252

geometric probability ---- squares

Inside  a  square  E  there  are  2  smaller  squares  A  and  B  ,both with  length  of  sides  being 1/2  of  that  of  E.  Both  squares
can  move  freely  inside  E,  but  must  keep  "parallel " with  E.  If  a point  is  chosen  randomly  on  E , find  the  probability  that  the  point lies  inside  A  and  B  at  the  same  time.

Last edited by mr.wong (2016-01-24 15:50:41)

Offline

#2 2016-01-24 21:50:32

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Hi;


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#3 2016-01-26 15:23:26

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Thanks  bobbym , you  are  right .

By  formula , we  have  the  probability  of  the  point  lies
within  the  axis  of 1  side ( say  horizontal  side ) of  the
common  portion  of  A  and  B  to  be  1/3 . Similarly ,
for  the  vertical  side , P  also  =  1/3 . Thus  combinely
P  of  the  point  lies  within  both  A  and  B  will  be  1/9 .
Will  the  answer  be  the  same  for  other  polygons , say
rhombus  under  similar  conditions ?

Offline

#4 2016-01-26 15:59:39

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Hi;

You mean with sides that are 1 / 2 of E?


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#5 2016-01-27 20:51:49

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

I  mean  that  the  word  " square "  is  replaced  by  " rhombus ",
others  remain  unchanged  in  the  original  post .

Last edited by mr.wong (2016-01-27 20:53:47)

Offline

#6 2016-01-31 20:37:43

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Now  let  us  consider  triangles :
Inside  a  triangle  E  there  are  2  smaller  similar  triangles
A  and  B , both  with  length  of  relative  sides  being  1/2  of
that  of  E . All  the  3  triangles  are  parallel  with  vertices  upwards .A  and  B  can  move  freely  inside  E , but  must  keep  parallel  with  E .If  a  point  is  chosen  randomly  on  E ,
find  the  probability  that  the  point  lies  inside  A  and  B  at  the  same  time .

Offline

#7 2016-02-03 04:50:05

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Hi;

There are several ways to have vertices upward, which do you want? Are these equilateral triangles?


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#8 2016-02-03 15:52:03

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

The  triangles  are  not  necessarily  equilateral , just  any 3  similar
triangles. Any  1  of  the  3  vertices  may  do , just  that  the  triangles  are  parallel .(i.e.  for  all  the  3  corresponding  sides )

Offline

#9 2016-02-03 15:59:11

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Then how do we know that the answer will not depend on the shape of the triangle chosen?


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#10 2016-02-04 15:16:57

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

Since  the  3  Δs  are  similar , the  result  should  be
the  square  of  the  ratio  of  any  1  side  of  the
expectation  of  common  portion  of  A  and  B  with
the  corresponding  side  of  E .

Offline

#11 2016-02-05 03:16:29

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Hi;

I could be making some giant mistake but everything keeps pointing to 1 / 10 as the probability. Of course I had to assume that what works for one triangle ( in this case I used a right triangle with sides of 1 and 1) is gonna work for them all.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#12 2016-02-06 16:07:27

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

I  think  that  whenever  A , B  and  E  are  similar  figures ( nomatter  squares , rhombuses  or  Δs )  and  in  parallel  position , and  with  the  same  proportion  of  corresponding 
sides ( i.e.  1/2 ) , the  probability  required  will  remain  the 
same , i.e.  1/3 *  1/3  =  1/9  .

Offline

#13 2016-02-07 03:47:08

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

I will recheck and if necessary post it to the mathematica gurus but simulations are not confirming your conjecture.

This is what I am simulating.

ceblcZ2.png

The red and blue triangles are 1 / 2 the length of the larger outer triangle and they can move anywhere inside the largest triangle. The bases stay parallel to the largest one and they are similar triangles.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#14 2016-02-07 15:51:11

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

I  have  to  emphasize  that  not  only  the  bases  ,but  in  fact  all  the  3  sides  of  the  Δs  stay  parallel . Otherwise  if  you  turn  1  of  the  smaller  Δ  by  90 degree  anti-clockwisely ( it  seems  possible ) then  only  2  of  the  3  sides  remain  parallel .

Last edited by mr.wong (2016-02-07 15:53:47)

Offline

#15 2016-02-10 16:50:53

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Related  problem ( I ) :  To  find  the  volume  of  a  polyhedron

Let   X  denotes  a  polyhedron  with  6  vertices  PQRSTU ,
11  sides  and  7  faces :
(1)  base  PQRS  being  a  square  with  sides  1/2  unit .
(2) Δ PTS  with  PT = 1/12 unit ( in  fact  sq.unit)
     where  TP  is  perpendicular  to  the  base .
(3) Δ PTQ  being  congruent  to  Δ PTS  .
(4) Δ RUQ  with  RU = 1/8  unit  ( or  sq.unit )
     where  RU  is  perpendicvlar  to  the  base .
(5) Δ RUS  being  congruent  to  Δ RUQ .
(6) Δ TQU .
(7) Δ TSU  being  congruent  to Δ TQU .       

How  to  find  the  volume  of  X ?

Offline

#16 2016-02-10 18:43:02

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Hi;

Yes, I have simulated the condition that all three sides are parallel. I got an answer of about 1 / 10. I am currently moving and there is much confusion because management is inept. I will be a bit slow in replying for a while.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#17 2016-02-11 21:06:53

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym , wish  you  will  have  a  smooth  move !

Now  let  us  continue  to  the  polyhedron X :
If  we  cut  X  into  2  halfs  at  TU , we  get  2  pyramids .
Let  us  choose  the  left  one  PRUTS , denoted  by  Y . We  may 
treat  Y  as  a  pyramid  having  5  faces with  PRUT  ( being  a  trapezium )  as  base , and  S  as  vertice .
We  may  find  that  PR = √1/2  unit  ;  ST = √ 37/144  unit ;
SU = √ 17/64 unit   and  UT = √ 289/576  unit .
The  area  of  base  PRUT  may  also  be  found  as   
√1/2  *  5/48  sq.unit .
How  to  find  the  height  of  the  pyramid  Y  so  that  we  can
calculate  the  volume  of  Y ?

Offline

#18 2016-02-12 05:05:45

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

I would like to go back to the sliding triangles first for several reasons:

1) Are answers did not coincide.

2) My simulation techniques were not fast enough.

These need to be addressed.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#19 2016-02-13 16:21:57

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

In  fact  the  problem  of  the  polyhedron  is  much  related
to  that  of  the  3  Δs , perhaps  we  can  obtain  the 
same  result  through  different  ways .

In  polyhedron  Y ,since  trapezium  PRUT  and  Δ PRS  are  mutually 
perpendicular , thus  the  height  of  the  pyramid  is  in  fact  the
height  of    Δ SPR .
Let  SW  denotes  the  height  meeting  PR  at  W ,
in  fact  SW = PW = WR =  1/2  PR  = 1/2 √1/2  unit .
Now  we  can  calculate  the  volume  of  Y  :
V = 1/3 * 1/2 √1/2  * √1/2  *  5/48  cu. unit
    =  5/ 576 cu.unit
Thus  V  of  X  =  5/ 288  cu. unit

Thus  the  average  height  ( expected  area )  on  PQRS
= ( 5/288)/ ( 1/4 ) sq.unit
= 5/72 sq.unit

The  above  value  denotes  the  expectation  of  the  common
portion  of  the  2  smaller  Δs  in  # 13 ,  thus  the probability
required  = (5/72)/(1/2) = 5/36   ( about  0.14 )

Offline

#20 2016-02-13 19:52:00

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

I am unable to verify that experimentally at the moment. I am still getting 1 / 10.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#21 2016-02-15 16:06:53

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

I  made  some  mistakes  in  finding  the  volume   of
the  polyhedron  in  the  past  3  posts . Now  I  shall
start  again  from  the  beginning  and  use  your  diagram
in  #13  as  reference .
Let  X  denotes  a  polyhedron  with  6  vertices  PQRSTU   and  7  faces .
(1) base  PQRS  being  a  square  with  sides  1/2  unit .
(2) Δ PTS  with  PT = 1/3 unit   where  TP  is   perpendicular  to  the  base .
(3) Δ PTQ  being  congruent  to  Δ PTS  .
(4) Δ RUQ  with  RU = 1/2  unit   where  RU  is  perpendicular  to  the  base .
(5) Δ RUS  being  congruent  to  Δ RUQ .
(6) Δ TQU .
(7) Δ TSU  being  congruent  to Δ TQU .   

In  fact  PT  denotes  the  expectation  of  the  length
of  the  common  portion  of  the  bases  of  the  2
smaller   Δs  ( the  red  and  blue ) when  the  distance
of  their  bases    with  the  base  of  the  large  Δ   are 
fixed  to  be  0   during  moving  in  parallel  direction ,
while  RU  denotes  the  expectation  of  the  length
of  the  common  portion  of  the  bases  of  the  2
smaller   Δs  when  the  distance  of  their  bases   
with  the  base  of  the  large  Δ   are  fixed  to  be  1/2
unit .
By  formula  we  find  that  PT = 1/3 unit  while  RU  is
fixed  to  be  1/2  unit .
In  this  case  UT  will  be  a  straight  line  ( linear )
otherwise  it  may  be  a  curve  of  2nd  order  if  it
represents  certain  areas  etc .
The  polyhedron  represents  the  distribution  of  data 
of  various  expectation  of  the  common  portion  of 
the  bases  of  the  2 smaller   Δs  according  to  the
various  distances  of  their  bases  with  the  large Δ .
If  we  divide  the  volume  of  X  by  its  base ,  we
get  the  overall  expectation   .
To  find  the  volume  of  X , it  may  be  easier  to  cut
X  into 2  halfs   at  TU   and  get  a  pyramid  Y .
The  base  of  Y  is  a  trapezium  PRUT  with  PT // RU ,
since  the  height  of  the  trapezium  PR = √1/2  unit ,
∴ the  area  of  PRUT  may  be  found  to  be
( 1/3  +  1/2 ) / 2  *  √1/2  =  √1/2  *  5/12  sq.unit .
( If  UT  is  a  curve  instead  of  a  straight  line  , then  the 
area  of  PRUT  should  be  found  by  integration  if
we  know  its  equation .)
Since  trapezium  PRUT  and  Δ PRS  are  mutually 
perpendicular , thus  the  height  of  the  pyramid  is
in  fact  the  height  of  the  Δ SPR .
Let  SW  denotes  the  height  meeting  PR  at  W ,
in  fact  SW = PW = WR =  1/2  PR  = 1/2 √1/2  unit .
Now  we  can  calculate  the  volume  of  Y  :
V = 1/3 * 1/2 √1/2  *  √1/2  *  5/12  cu. unit
    =  5/ 144 cu.unit
∴  V  of  X  =  5/ 72   cu. unit
Thus  the  average  height    on  PQRS
= ( 5/72)/ ( 1/4 ) unit
= 5/18  unit
The  above  value  denotes  the  expectation  of 
the  base  of  common  portion  ( also  a  similar 
and  parallel  Δ ) of  the  2  smaller  Δs  in  # 13 .
Thus  the probability  required
= (5/18)*(5/18) = 25/324   ( about  0.077 )

Offline

#22 2016-02-17 23:29:50

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Perhaps  we  can  find  the  probability  in  another  way .
In  the  diagram  of  #13  let  the  coordinates  of  the  large  Δ 
denoted  by  (0,0)  ( 1,0) and  ( 0,1) , and  let  the  2  smaller Δs
denoted  by  A  and  B . Their  vertices  at  right  angle  will  be 
represented  by  VA  and  VB . It  is  clear  that  both  VA 
and  VB  lie  within  the  Δ (denoted  by  D)  with  coordinates  (0,0)  (1/2,0) and (0,1/2) or  intersections  of  the  3  lines  with  equations
(i) y=0 ; (ii) x=0 and (iii) x+y = 1/2 .
If  a  point  is  chosen  randomly  inside  D , what  will  be  the  expected
values  of  its  coordinates ?

Offline

#23 2016-02-20 20:37:52

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Let  us  try  to  solve  the  original  problem  step  by  step  from  special  case  to  general  case .
Let  (a1,a2)  denotes  the  coordinate  of  VA   and  (b1,b2)  denotes  the  coordinate  of  VB .       
Suppose  a2 = b2 , i.e   A  and  B  have  same  distance  with  the  base  of  the  large  Δ  .
The  length  of  the  base  of  the  similar  Δ  formed  by  overlapping  A  and  B
will  be  1/2 - [ max ( a1,b1 ) - min ( a1,b1 )]  i.e.  1/2 - |a1-b1|  ( absolute  value )
Since  both  a1  and  b1  lie  between  0  and  1/2  , thus  |a1-b1|  also  lie  between 
0  and  1/2 . We  can  find  the  expected  value  of  1/2 - |a1-b1|  by  solid 
geometry .
Let  PQRST  denotes  a  pyramid  with  base  PQR  being  a  Δ  where  PQ
= 1/2 unit ( length  of  |a1-b1| )  while  PR = 1/2 unit  ( range  of  a2 or  b2  :  also  from
0  to  1/2 ) .  RPTS  being  a  square  with  length  1/2  unit , where  PT  denotes  the  value  of
1/2 - |a1-b1|  =  1/2  since  |a1-b1|  = 0  when  both  a1 = b1 = 0 .
Similarly  RS = 1/2  when  a1 = b1 = 0  with  a2 and  b2  = 1/2 .
To  calculate  the  volume  of  the  pyramid  we  treat  the  square  as  base  with
Q  as  the  vertex . 
Since  V = 1/3 *  1/2 * 1/2  * 1/2  = 1/24 cu.unit
Since  the  area  of  the  original  base  Δ PQR = 1/2 * 1/2 * 1/2 = 1/8 sq.unit
Thus  the  average  height  ( expected  value of  1/2 - |a1-b1|  ) = 1/3 unit .
Thus  the  area  of  the  similar  Δ  formed  by  overlapping  A  and  B  will  be
1/3 * 1/3  * 1/2 sq.unit  , dividing  by  the  area  of  the  large   Δ  being 1*1*1/2
sq.unit  ,  we  get  the  probability  required  = 1/9  .

Nextly  we  shall  find  what  will  be  the  result  if  a2 ≠ b2 .

Offline

#24 2016-02-21 02:36:20

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

It might be 1 / 9 but I would like the theory and the simulation to agree.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#25 2016-02-22 00:31:55

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

I  apologize  that  I  had  made  mistakes  again  in  the  last  post .
Under  the  condition  of  a2 = b2 , the  probability  required  should
be  5/12 *  5/12 = 25/144 ( about  0.17)
I  am  not  sure  which  answer  provided  by  me  is  correct  ,  or  may
be  all  wrong .
It  seems  it  is  impossible  to  solve  this  problem  by  solid  geometry ,
for  there  are  too  many  variables  thus  out  of  the  capacity  of  solid
geometry . Perhaps  this  problem  may  be  solved  by   multiple  integration 
which  I  am  not  familiar  . Thus  I  shall  postpone  to  discuss  this  problem 
for  myself , but  wish  someone  skilful  in  multiple  integration  may  find  a  solution  for  it  .
Later  I  shall  discuss  various  related  problems   other  than  triangles .

Offline

Board footer

Powered by FluxBB