Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#351 2018-05-04 00:54:05

ganesh
Administrator
Registered: 2005-06-28
Posts: 24,684

Re: crème de la crème

318) Axel Fredrik Cronstedt

Axel Fredrik Cronstedt, (born Dec. 23, 1722, Turinge, Sweden—died Aug. 19, 1765, Säter), Swedish mineralogist and chemist noted for his work on the chemistry of metallic elements and for his efforts to establish a new mineralogical system. He is also credited with developing an experimental procedure involving the systematic use of blowpipes for analyzing the chemical composition of minerals.

Cronstedt was the first to isolate nickel (1751). He also made a detailed analysis of calcium tungstate, a previously unknown mineral of high specific gravity, and studied the properties of gypsum and a hydrous mineral he named zeolite. Such experiments revealed certain laws governing the internal structure of minerals and enabled him to establish a distinction between simple minerals and rock minerals, which are composed of a mixture of several minerals.

7304360.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Online

#352 2018-05-06 01:19:34

ganesh
Administrator
Registered: 2005-06-28
Posts: 24,684

Re: crème de la crème

319) Johan August Arfwedson

Johan August Arfwedson was born in Skagersholm, Sweden, on January 12, 1792, to a wealthy merchant family. He was homeschooled as a child, and at the age of 14, he started to study law and mining sciences at the University of Uppsala, Sweden. In 1812, he joined the Royal College of Mines in Stockholm, Sweden.


In Stockholm, Arfwedson met Jöns Jacob Berzelius, who established the law of constant proportions and today is considered one of the founders of modern chemistry. Arfwedson joined his laboratory and started to work on the analysis of minerals. He investigated, e.g., the composition of manganese oxides.


In 1817, Arfwedson started his work on petalit, a mineral that had been found in an iron mine on the island Utö south of Stockholm. Petalit has the composition LiAlSi4O10. Arfwedson successfully determined the silica and alumina content, but together, these accounted for only 96 % of the mineral's weight. After further experiments, Arfwedson and Berzelius concluded that the missing part must be a new alkali metal, which they termed "lithium" (stone metal).


Arfwedson prepared several lithium salts but was not able to isolate the element in its metallic form. The first isolation of lithium was achieved by Sir Humphrey Davy and William Thomas Brande in 1818, who performed an electrolysis of lithium oxide (Li2O) and obtained small amounts of the metal.


In 1819, Arfwedson set up his own laboratory. However, he owned several industrial plants and had little free time to pursue his research. Nevertheless, he published analyses of minerals such as cyanite, sodalite, and chrysoberyl, as well as of several uranium compounds. In 1823, the British scientist Henry James Brooke named a newly discovered mineral "arfvedsonite" to honor Arfwedson's contributions to mineralogy. Johan August Arfwedson died on October 28, 1841, in Hedensö, Sweden.

1590849ae84.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Online

#353 2018-05-08 01:18:13

ganesh
Administrator
Registered: 2005-06-28
Posts: 24,684

Re: crème de la crème

320) William Stanley Jr.

William Stanley Jr. (November 28, 1858 – May 14, 1916) was an American physicist born in Brooklyn, New York. In his career, he obtained 129 patents covering a variety of electric devices. In 1913, he also patented an all-steel vacuum bottle, and formed the Stanley Bottle Company.

Early life

Stanley was born November 28, 1858 in Brooklyn, NY, the son of William Stanley and Elizabeth A. Parsons Stanley. William Jr. attended Williston Seminary and later graduated from Yale University with the class of 1881.

Career

Stanley was as an electrician working with tele keys and fire alarms of an early manufacturer. In Philadelphia, Stanley designed one of the first electrical installations (at a Fifth Avenue store). Shortly thereafter, George Westinghouse hired Stanley as his chief engineer at his Pittsburgh factory.

In 1885, Stanley built the first practical alternating current device based on Lucien Gaulard and John Dixon Gibbs' idea. This device was the precursor to the modern transformer. In December, under a new contract with Westinghouse, Stanley moved his operations to Great Barrington, Massachusetts.

In 1886, on March 20, Stanley demonstrated the first complete system of high voltage Alternating Current transmission, consisting of generators, transformers and high-voltage transmission lines. His system allowed the distribution of electrical power over wide areas. He used the system to light offices and stores along the main street of Great Barrington - the location of his West Avenue family home. Stanley's transformer design became the prototype for all future transformers, and his AC distribution system formed the basis of modern electrical power distribution. He was the first person to make an electrical transformer, and his work in the electrification of Great Barrington's Main Street was named an IEEE Milestone.

Agreeing that the AC system had arrived, Westinghouse further tested the system in summer 1886 in Pittsburgh; it transmitted over a distance of 3 miles, and used an alternator designed by Stanley to replace the Siemens model, which regulated voltage poorly. Satisfied with the pilot system, Westinghouse began commercial production and shipped his company's first commercial to Buffalo NY, where a local utility placed it in service. Orders for 25 alternating-current plants followed within months.

In 1890, Stanley founded the Stanley Electric Manufacturing Company in Pittsfield, Massachusetts. In 1903 the General Electric Corporation purchased a controlling interest in the firm. The land on which the company once stood is now the site of the William Stanley Business Park of the Berkshires in Pittsfield.

William-Stanley_jr.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Online

#354 2018-05-09 15:10:19

ganesh
Administrator
Registered: 2005-06-28
Posts: 24,684

Re: crème de la crème

321) Hideki Yukawa

Hideki Yukawa, (born January 23, 1907, Tokyo, Japan—died September 8, 1981, Kyōto), Japanese physicist and recipient of the 1949 Nobel Prize for Physics for research on the theory of elementary particles.

Yukawa graduated from Kyōto Imperial University (now Kyōto University) in 1929 and became a lecturer there; in 1933 he moved to Ōsaka Imperial University (now Ōsaka University), where he earned his doctorate in 1938. He rejoined Kyōto Imperial University as a professor of theoretical physics (1939–50), held faculty appointments at the Institute for Advanced Study in Princeton, New Jersey (U.S.), and at Columbia University in New York City, and became director of the Research Institute for Fundamental Physics in Kyōto (1953–70).

In 1935, while a lecturer at Ōsaka Imperial University, Yukawa proposed a new theory of the strong and weak nuclear forces in which he predicted a new type of particle as those forces’ carrier particle. He called it the U-quantum, and it was later known as the meson because its mass was between those of the electron and proton. American physicist Carl Anderson’s discovery in 1937 of a particle among cosmic rays with the mass of the predicted meson suddenly established Yukawa’s fame as the founder of meson theory, which later became an important part of nuclear and high-energy physics. However, by the mid-1940s, it was discovered that Anderson’s new particle, the muon, could not be the predicted carrier particle. The predicted particle, the pion, was not discovered until 1947 by British physicist Cecil Powell, but, despite Yukawa’s successful prediction of the pion’s existence, it also was not the carrier particle of the nuclear forces, and meson theory was supplanted by quantum chromodynamics.

After devoting himself to the development of meson theory, Yukawa started work in 1947 on a more comprehensive theory of elementary particles based on his idea of the so-called nonlocal field.

Hideki_Yukawa-200x.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Online

#355 2018-05-09 23:05:49

Mathegocart
Member
Registered: 2012-04-29
Posts: 1,917

Re: crème de la crème

Hi, this is intriguing.

Last edited by Mathegocart (2018-05-09 23:06:09)


The integral of hope is reality.
May bobbym have a wonderful time in the pearly gates of heaven.
He will be sorely missed.

Offline

#356 2018-05-11 01:34:14

ganesh
Administrator
Registered: 2005-06-28
Posts: 24,684

Re: crème de la crème

Hi,

Thanks,  Mathegocart!

322) Willem Einthoven

Willem Einthoven, (born May 21, 1860, Semarang, Java, Dutch East Indies—died Sept. 29, 1927, Leiden, Neth.), Dutch physiologist who was awarded the 1924 Nobel Prize for Physiology or Medicine for his discovery of the electrical properties of the heart through the electrocardiograph, which he developed as a practical clinical instrument and an important tool in the diagnosis of heart disease.

Einthoven was graduated in medicine from the University of Utrecht and served as professor of physiology at the University of Leiden from 1886 until his death. In 1903 he devised the first string galvanometer, known as the Einthoven galvanometer; with this instrument he was able to measure the changes of electrical potential caused by contractions of the heart muscle and to record them graphically. He coined the term electrocardiogram for this process. Einthoven recognized differences in the records or tracings obtained from different kinds of heart disease. From 1908 to 1913 he studied the patterns of records of normal heart activity in order to gain precision in recognizing and interpreting deviations.

Einthoven continued to develop electrode arrangements, and the present-day standard limb leads were originally described and used by him. The clinical application of Einthoven’s instrument was pioneered by the British physician Sir Thomas Lewis, with whom Einthoven maintained a long and fruitful correspondence.

einthoven.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Online

#357 2018-05-13 01:02:59

ganesh
Administrator
Registered: 2005-06-28
Posts: 24,684

Re: crème de la crème

323) David Hughes

David Hughes, in full David Edward Hughes, (born May 16, 1831, London, England—died January 22, 1900, London), Anglo-American inventor of the carbon microphone, which was important to the development of telephony.

Hughes’s family emigrated to the United States when he was seven years old. In 1850 he became professor of music at St. Joseph’s College, Bardstown, Kentucky. Five years later he took out a U.S. patent for a type-printing telegraph instrument; its success was immediate, and in 1857 Hughes took it to Europe, where it came into widespread use and in some places continued in use until the 1930s. Hughes’s microphone, invented in 1878, was the forerunner of the various carbon microphones that were used in most telephones produced in the 20th century.

From 1879 to 1886 Hughes performed a series of experiments in which his equipment transmitted wireless signals up to 500 yards. The observed effects were attributed to induction by other scientists. Hughes disagreed but did not know how the transmissions were working. It was not realized until 1899, after German physicist Heinrich Hertz’s radio wave experiments in the late 1880s, that Hughes had been the first to produce radio waves.

DavidEdwardHughes.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Online

#358 2018-05-15 00:59:02

ganesh
Administrator
Registered: 2005-06-28
Posts: 24,684

Re: crème de la crème

324) Smithson Tennant

Smithson Tennant was born on November 30, 1761 – died on February 22, 1815. Tennant is best known for his discovery of the elements iridium and osmium. He also contributed to the proof of the identity of diamond and charcoal. The mineral tennantite is named after him.

Following research work done by tenant which leads to the discovery of osmium and iridium elements.

Tennant fused the insoluble residue with alkali at high temperature and dissolved the resulting cooled solid in water, producing a further black solid and a yellow solution. The yellow solution was probably a basic form of osmium tetroxide, OsO4. The black solid was further treated with hydrochloric acid, the solid produced was fused with caustic soda and further treatment with acid obtained red crystals. These are most likely to have been Na2[IrCl6].nH2O. On heating these, a white powder of an unknown element was obtained, which was later identified as iridium element.

Osmium is a hard, brittle, bluish-white transition metal in the platinum group. Its alloys with platinum, iridium and other platinum group metals are employed in fountain pen nibs, electrical contacts, and other applications. Osmium is a hard but brittle metal that remains lustrous even at high temperatures. It has a very low compressibility. The most common oxidation states of osmium element include +2, +3, +4, and +8. It can be dissolved by fused alkalies, especially if an oxidizing agent such as sodium chlorate is present. Osmium will react at 200° C with air or oxygen to form OsO4. Osmium has high reflectivity in the ultraviolet range of the electromagnetic spectrum.

Iridium is a very hard, brittle, silvery-white transition metal of the platinum family. It is the only metal to maintain good mechanical properties in air at temperatures above 1600 °C. The most important iridium compounds in use are the salts and acids it forms with chlorine, though iridium also forms a number of organometallic compounds used in industrial catalysis, and in research. Iridium metal is employed when high corrosion resistance at high temperatures is needed, as in high-performance spark plugs, crucibles for recrystallization of semiconductors at high temperatures, and electrodes for the production of chlorine in the chloralkali process. Iridium radioisotopes are used in some radioisotope thermoelectric generators.

Iridium forms compounds in oxidation states between −3 and +9. Iridium has two naturally occurring, stable isotopes, 191Ir and 193Ir, with natural abundances of 37.3% and 62.7%, respectively. Iridium is one of the nine least abundant stable elements in Earth's crust, having an average mass fraction of 0.001 ppm in crustal rock. Iridium is obtained commercially as a by-product from nickel and copper mining and processing.

Smithson-Tennant-e.gif


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Online

#359 2018-05-17 01:18:40

ganesh
Administrator
Registered: 2005-06-28
Posts: 24,684

Re: crème de la crème

325) Clarence Birdseye

Clarence Birdseye, (born December 9, 1886, New York, New York, U.S.—died October 7, 1956, New York), American businessman and inventor best known for developing a process for freezing foods in small packages suitable for retailing.

After working as a government naturalist, Birdseye went to Labrador as a fur trader in 1912 and again in 1916. There the people often froze food in the winter because of the difficulty of obtaining fresh food; this solution to their problem spurred Birdseye’s imagination.

After returning to the United States, he began to experiment and, in 1924, helped found General Seafoods Company. Five years later he began selling his quick-frozen foods, a successful line of products that made him wealthy. Birdseye’s process consisted of rapid freezing of packaged food between two refrigerated metal plates. Though his were not the first frozen foods, Birdseye’s freezing process was a highly efficient one that preserved the original taste of a variety of foods, including fish, fruits, and vegetables. In 1929 Birdseye’s company was bought by Postum, Inc., which changed its own name to the General Foods Corporation, retaining Birdseye as a consultant. From 1930 to 1934 Birdseye was president of Birds Eye Frosted Foods and from 1935 to 1938, of Birdseye Electric Company.

Birdseye held nearly 300 patents. Besides his frozen food process, he developed infrared heat lamps, a recoilless harpoon gun for taking whales, and a method of removing water from foods. A few years before his death he perfected a method of converting bagasse (crushed sugarcane residue) into paper pulp.

clarence-birdseye-200.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Online

#360 2018-05-19 01:11:20

ganesh
Administrator
Registered: 2005-06-28
Posts: 24,684

Re: crème de la crème

326) Abraham-Louis Breguet

Abraham-Louis Breguet, (born Jan. 10, 1747, Neuchatel, Switz.—died Sept. 17, 1823, Paris), the leading French horologist of his time, known for the profusion of his inventions and the impeccable style of his designs.

Breguet was apprenticed in 1762 to a watchmaker at Versailles. He took refuge in Switzerland during the French Revolution and, upon his return to France, became a principal watchmaker of the empire. Among Breguet’s many inventions and innovations were the overcoil, an improvement of the balance spring that was incorporated into many precision watches, and the tourbillon, an improvement that rendered the escapement immune to errors caused by the changing position of the watch while being carried. Breguet succeeded Pierre-Louis Berthoud as the official chronometer maker to the French navy in 1815 and was admitted to the French Academy of Sciences in 1816. Considered to be one of the greatest watchmakers of all time, Breguet had in his lifetime a worldwide reputation and clientele, and he influenced watchmaking throughout Europe.

18231.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Online

#361 2018-05-21 01:26:17

ganesh
Administrator
Registered: 2005-06-28
Posts: 24,684

Re: crème de la crème

327) Thomas Romney Robinson

Rev John Thomas Romney Robinson (23 April 1792 – 28 February 1882), usually referred to as Thomas Romney Robinson, was a 19th-century astronomer and physicist. He was the longtime director of the Armagh Astronomical Observatory, one of the chief astronomical observatories in the UK of its time.

His is remembered as inventor of the 4-cup anemometer.

Biography

Robinson was born at St Anne's in Dublin, the son of the English portrait painter Thomas Robinson (d.1810) and his wife, Ruth Buck (d.1826). He was educated at Belfast Academy then studied Divinity at Trinity College, Dublin, where he was elected a Scholar in 1808, graduating BA in 1810 and obtaining a fellowship in 1814, at the age of 22. He was for some years a deputy professor of natural philosophy (physics) at Trinity.

Having been also ordained as an Anglican priest while at Trinity, he obtained the church livings of the Anglican Church at Enniskillen and at Carrickmacross in 1824.

In 1823, now aged 30, he additionally gained the appointment of astronomer at the Armagh observatory. From then on he always resided at the Armagh observatory, engaged in researches connected with astronomy and physics, until his death in 1882.

During the 1840s and 1850s Robinson was a frequent visitor to the world's most powerful telescope of that era, the so-called Leviathan of Parsonstown telescope, which had been built by Robinson's friend and colleague William Parsons, 3rd Earl of Rosse. Robinson was active with Parsons in interpreting the higher-resolution views of the night sky produced by Parsons' telescope, particularly with regard to the galaxies and nebulae and he published leading-edge research reports on the question. Back at his own observatory in Armagh, Robinson compiled a large catalogue of stars and wrote many related reports. In 1862 he was awarded a Royal Medal "for the Armagh catalogue of 5345 stars, deduced from observations made at the Armagh Observatory, from the years 1820 up to 1854; for his papers on the construction of astronomical instruments in the memoirs of the Astronomical Society, and his paper on electromagnets in the Transactions of the Royal Irish Academy".

Robinson is also of note as the inventor of a device for measuring the speed of the wind, the Robinson cup-anemometer (1846).

He was president of the Royal Irish Academy from 1851 to 1856, and was a long-time active organiser in the British Association for the Advancement of Science.

Robinson was a friend of Charles Babbage, who said was "indebted" for having reminded him about the first time he came up with the idea of the calculating machine.

Family

He married twice: first Eliza Isabelle Rambaut (d.1839) and secondly Lucy Jane Edgeworth (1806–1897), the lifelong disabled daughter of Richard Lovell Edgeworth. His daughter married the physicist George Gabriel Stokes. Stokes frequently visited Robinson in Armagh in Robinson's later years.

Recognition

On the Moon, the crater Robinson (crater) is named in his honour.

Thomas%20Romney%20Robinson.png


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Online

#362 2018-05-23 17:30:47

ganesh
Administrator
Registered: 2005-06-28
Posts: 24,684

Re: crème de la crème

328) Sir Charles Wheatstone

Sir Charles Wheatstone, (born Feb. 6, 1802, Gloucester, Gloucestershire, Eng.—died Oct. 19, 1875, Paris), English physicist who popularized the Wheatstone bridge, a device that accurately measured electrical resistance and became widely used in laboratories.

Wheatstone was appointed professor of experimental philosophy at King’s College, London, in 1834, the same year that he used a revolving mirror in an experiment to measure the speed of electricity in a conductor. The same revolving mirror, by his suggestion, was later used in measurements of the speed of light. Three years later, with Sir William Fothergill Cooke of England, he patented an early telegraph. In 1843, he brought to notice the Wheatstone bridge, a device invented by British mathematician Samuel Christie.

His own inventions include the concertina, a type of small accordion, and the stereoscope, a device for observing pictures in three dimensions still used in viewing X-rays and aerial photographs. He initiated the use of electromagnets in electric generators and invented the Playfair cipher, which is based on substituting different pairs of letters for paired letters in the message. He was knighted in 1868.

charles-wheatstone-1.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Online

#363 Today 02:37:20

ganesh
Administrator
Registered: 2005-06-28
Posts: 24,684

Re: crème de la crème

329) Robert William Thomson

Robert William Thomson, (born June 29, 1822, Stonehaven, Kincardineshire, Scotland—died March 8, 1873, Edinburgh), Scottish engineer and entrepreneur, inventor of the pneumatic tire.

Thomson was the son of the owner of a woollen mill and was sent at age 14 to Charleston, South Carolina, U.S., to live with an uncle and learn the merchant’s trade. Two years later he returned to Scotland, where he worked on various inventions, apprenticed in engineering workshops in Aberdeen and Dundee, and learned civil engineering in Edinburgh and Glasgow. While working in Edinburgh, he invented a system for detonating demolition explosives by electricity. Thomson then went to London and joined the South Eastern Railway Company, where he worked under prominent engineers Sir William Cubitt and Robert Stephenson (the latter the son of pioneering railway engineer George Stephenson).

In 1845 Thomson acquired a patent for a pneumatic tire—actually a hollow leather tire enclosing a rubberized fabric tube filled with air. Although a set of Thomson’s “aerial wheels” ran for 1,200 miles (roughly 2,000 km) on an English brougham, rubber for the inner tubes was so expensive that the tires could not be made profitably, and, thus, for almost half a century, air-filled tires were forgotten. The growing popularity of the bicycle later in the century revived interest in tire design, and in 1888 John Boyd Dunlop, a Scottish veterinarian living in Belfast, obtained patents on a pneumatic tire for bicycles, tricycles, and other vehicles. Dunlop later lost his main patent after it was discovered that Thomson had already patented the principle of the pneumatic tire.

Thomson went on to invent a fountain pen (1849) before he went to work for an engineering firm in Java (1852–62), where he designed a mobile steam crane. Back in Scotland, he developed and put into production a steam road vehicle that ran on solid rubber tires. Thomson’s machines were used to haul heavy loads on level and inclined ground and to provide omnibus service between Edinburgh and the port town of Leith.

RW-Thomson.205121403_std.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Online

Board footer

Powered by FluxBB