I was sitting and thinking (I seen to do that alot. lol) and I had this intresting revalation:

Being in the 7th grade we concide the square root of a negative "undefiend".

Well, I dawned on me that you could just do this: sqrt(-16)=-16^1/2*sqrt(-1)My math teacher informed me this already existed and they were called imaginary numbers. (I was crushed)

I know how you feel. Back then when I was a 7th grader myself, I realized that if you multiply two numbers whose difference is 2, the result will be the square of the middle number subtracted by 1. When I entered a math major in college I tried to write it down, only to find out that it was (a + 1)(a - 1) = a^2 - 1, an equation already well-known even before I was a 7th grader.

]]>Reinventing the wheel isn't a bad thing at all. Just kind in mind that hundreds of people have dedicated their lives to mathematics, there is a whole lot we know, but even more we don't.

The square root of -1 is a fourth root of unity, the fourth root of -1 is an eight root of unity. However, the complex numbers are algebraically closed. This means that (among other things), when ever you take a root of an imaginary number, you stay within the complex numbers. For example, an eight root of unity:

What this means is that:

But that doesn't hold for any power less than 8 and above 0. But also:

]]>Being in the 7th grade we concide the square root of a negative "undefiend".

Well, I dawned on me that you could just do this: sqrt(-16)=-16^1/2*sqrt(-1)

My math teacher informed me this already existed and they were called imaginary numbers. (I was crushed)

A few days later I was thinking (see what I mean) and I had another revalation. The square root of a imaganary number could be expressed as the 4th root of -1. So I wrote this formula:

A stands for alternate number line. Where N is the number line. Ex N=0 (Real Numbers) N=1 (Imaginary) N=2 (Imaginary root?) ect.

Has this already been invented? (Just crush me now)

IF NOT I HAVE FUFILED MY DREAM!!!! TO ONE WRITE MY OWN USEFUL FORMULA!! (No matter how obvious it is)

]]>