You are not logged in.
Pages: 1
The "revised sieve" seems to work with any top row that is devised of multiples of 10 (1-9 all odd numbers included, 1-99 all odd numbers included) , and on up. Yes, changing the numbers on the top row will change the pattern for each composite formed by a specific prime. All of the composites formed by any specific prime start at 3*P(or 3*C) if you want to and work up the number ladder(3*1,3*3,3*5,and up through every odd number in sequence for all composites formed by 3). if you start with 5*1 your first composite is 5*3, and on up the line in sequence. Choose any prime you want (you can choose any composite also) and follow the list. It will start at 1*P or 1*C and move to 3*P or C, 5*P or C, 7* P or C, 9*P or C, and on up in sequence(11,13,...the last number). I ask you, or anyone else, to try my method to prove if I am right or wrong before dismissing it out-of-hand that I am wrong. Is there anyone willing to take the challenge? The composites formed by 3 are easy to find, as they will move forward or back 1 odd number, depending on the length of the top row. The composites formed 5 run straight down the list if you use a top row of multiples of 10 (5,15,25,...). The 7 composites will run, on the row below, forward or back 1-6 spaces (depending on the length of the top row) for a total of 7 odd numbers(forward move+ back move=7 odd numbers.
I finally decided to use a graph that had the odd numbers from 1 to 49 in the top row. I the second row, 51 to 99. I continued down to the last row ending in 349. After marking down all the composites of 3, down to 51, I went to 3 on the top row. Dropping down to the next row (essentially making it 53 and subtracting 2, I arrived at 51, 3*17. at 15 +50 -2, I arrived at 63. Every composite of 3 was add 48, or add 54 to go the other way. The 7 composites were add 42, or add 56 for the direction you want to go. This ran true for my graph up to 349. If the top row is changed to 1 to 99, 1 to 149,or higher, the pattern for each prime composite changes. Ex. 3 + 100= 103 +2 =105. Useless information, but interesting.
The problem with trying to find a pattern for the prime numbers is that everyone leaves the even numbers on the "sieve". I finally hit on the idea to leave out the even numbers and only list the odd numbers on my "sieve". I had to leave the 5 composites in the list since there are four numbers between 3 and 7 and two between 1 and 3 and two between 7 and 9. The results were very interesting. Got to go to work. I will try to explain later.
I have an idea that might help you make a little more sense of the prime pattern. If you are interestedlet me know. I have tried many times to make sense of the same problem.
I still remember how interested I was in school 60 years ago. When the class started to learn reading and arithmetic, I was hooked. When I got to the higher math, I couldn't understand most of it. I still do elementary math to keep the mind sharp. I am interested in the prime numbers , trying to find a pattern. I love a good puzzle! So I have come here to ask a few questions and some things I have found, if anyone is interested.
Pages: 1