Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 Re: Puzzles and Games » Add 13 more and post it forever. » 2010-06-03 05:26:47

skymus: Your avatar is simply smashing!!! wave


   up   up   up
Animated avatars of ZHero and bobbym encouraged me to find a dynamic one roflol
_________________________

7371  n = Post # = 567

Let's play the numbers as finite series:

In finite series

, where d = X2 - X1
In our case we know k = 566 numbers and want to find 567th which is k+1 = 567, d = 26 - 13 = 13:

and

To celebrate an equation of the 5-year old kid 1+ 3 + 5 = 3*3 we play it for 13:

#2 Re: Puzzles and Games » Add 13 more and post it forever. » 2010-06-02 03:21:35

7306, n = Post # = 562 

Let play the numbers as

Let's come back for a minute to 5-year old discovery 1 + 3 + 5 = 3*3
We explored it in a separate topic: 1+3=2^2 etc. and came to the following:
X1 + X2 + X3+ …+ Xn = a * b in the post,
where a = (X1 + Xn) / 2, b = n.

In finite series X(n+1) = X1 + n * d, where d = X2 - X1
In our case we know k = 561 numbers and want to find 562th which is k+1 = 562, d = 26 - 13 = 13:

and

Few hands-on examples:
Ex: 1 + 3 + 5 = (1 + 5) / 2 * 3, n = 3, X(n+1) = 1 + 3 * 2 = 7
Ex: 3 + 6 + 9 + 12 = (3 + 12) / 2 * 4, n = 4, X(n+1) = 3 + 4 * 3 = 15
Ex: 13 + 26 + 39 + 52 + 65 = (13 + 65) / 2 * 5,  n = 5, X(n+1) = 13 + 5 * 13 = 78

roflol   roflol   roflol

     A SLICE OF PI
******************
  3.14159265358979
    1640628620899
      23172535940
        881097566
          5432664
            09171
              036
                5
from Math Humor

#3 Re: Puzzles and Games » Add 13 more and post it forever. » 2010-06-01 10:19:57

7254    n = Post# = 558 (see top right)


roflol   roflol   roflol

                                           PascalTriangleAnimated2.gif
                                                                  Pascal Triangle

#4 Re: Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2010-06-01 06:29:17

Do you remember...
              1
Roll # = (∫x³dx)-¹  = ?
              0

roflol We still need one more roll ... Anybody wants to give it a try?.. touched

P.S. You may use the table to find what :
1
(∫x³dx)-¹  = ?
0

#5 Re: Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2008-01-28 09:29:02

sleep
So, Post #12 defined the game out of 5 rolls.       
The number to reach and overcome is Total = 82.

Until this moment  touched gave us the following rolls:
Roll #1 = 6: 1 + 3 + 5 + 7 + 9 + 11 = 6 * 6 in Post #13
Roll #2 = 3: 1 + 3 + 5 = 3 * 3 in Post #18
Roll #3 = 4: 1 + 3 + 5 + 7 = 4 * 4 in Post #19
Total = 36 + 9 + 16 = 61
                                                   We need two more rolls!

Today we will Roll #4 = ...

Ready, Set and Ready, Go: . . . 5

Thank you, touched!

Thus, Roll #4 = 5: 1 + 3 + 5 + 7 + 9 = 5 * 5
Total: 61 + 25 = 86

wave   roflol   roflol   roflol   wave

Can Anybody roll the dice for the last Roll #5? sleep

#6 Re: Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2007-11-23 13:23:41

wave   wave   wave
Winnie the Pooh: Hellooooooo.... Is anybody at home??????

        shame   shame
Rabbit: No, NOBODY!

...
             dunno
Winnie (to himself): if somebody says NOBODY, than it means there should be somebody.
_______________________________________________________________

Winnie:
Can Anybody Roll the Dice?

touched   touched   touched

#7 Re: Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2007-10-02 12:51:24

So, Post #12 defined the game out of 5 rolls.       
The number to reach and overcome is = 82.

Until this moment touched gave us the following rolls:
6: 1 + 3 + 5 + 7 + 9 + 11 = 6 * 6 in Post #13
3: 1 + 3 + 5 = 3 * 3 in Post #18
4: 1 + 3 + 5 + 7 = 4 * 4 in Post #19

                                                   We need two more rolls!

faint  wave  faint  wave  faint  CAN anybody ROLL the DICE?.... ANYBODY ? . . . .   faint  wave   faint  wave  faint 

              Let's do the deal: you will roll the dice and I will count the numbers! 

#8 Re: Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2007-07-25 04:04:11

roflol   roflol   roflol   roflol   roflol

For previous case of Roll # = 4, the equality is:

1 + 3 + 5 + 7 = 4 * 4

dizzy  Do you remember?  dizzy
  1
(∫x³dx)-¹ = 4 and thus Roll # = 4?
  0
______________________________________

Ok, now is your turn. big_smile

May you roll a dice to give me your Roll #?

wave   up   wave

#9 Re: Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2007-06-09 11:42:17

sleep    sleep    sleep
ok, ok. Let's do it together!

roflolrolleyes   dunno   rolleyesroflol
Find:
               1
Roll # = (∫x³dx)-¹
               0
                                             what
Use the table to find it:
       1
for (∫x³dx)-¹:  (x^4/4)-¹ = 4/x^4  ???  Nope! See Mr. Franklin's corrective post below
       0
It is:
       1
for (∫x³dx)-¹ we plug 0 and 1 into formula as follows:
       0
                           (x^4/4)-¹ ol¹ = [(1^4)/4 - (0^4/4)]-¹ = (1/4 - 0/4)-¹ = (1/4)-¹ = 4

faint      rolleyes      faint      rolleyes      faint

Therefore:
  1
(∫x³dx)-¹ = 4 and thus Roll # = 4
  0

up   touched   up
PS I've got too much pre-occupied with placing correct math symbols as x^4 and ∫
to miss on the flow of the calculation itself.
It is interesting that we have x³ ready to use here, which is x^3, but not the same for x^4.
Thank you, John, for interaction.

#10 Re: Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2007-05-16 07:46:20

wave   wave   wave

For Roll # = 3 the equality is: 1 + 3 + 5 = 3 * 3.

up   up   up

________________________________________________

faint   dunno   faint   rolleyes   faint

Use the table to find what :
               1
Roll # = (∫x³dx)-¹
               0

roflol Anybody give it a try?.. touched

#11 Re: Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2007-04-26 10:08:05

For previous case of Roll # = 6, the equality is:

1 + 3 + 5 + 7 + 9 + 11 = 6 * 6

Next, let us say touched gives... Roll # = 3:

for Roll # = 3, write down the equality here:

1 + ... = 3 * 3
_______________________________________

roflol   roflol   roflol
Now let us have even more fun!

Let's say that touched gives...

                   1
... Roll # = (∫x³dx)-¹
                  0

First, count Roll# = __

Then, write down the equality here:   _ + _ + ... = _ * _

Have fun dizzy

#12 Re: Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2007-04-02 04:59:12

dunno

touched gives... 6

for Roll # = 6, write down the equality here:

1 + ... = 6 * 6

up

#13 Re: Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2007-03-21 04:14:56

Let's now play a little game: !roflol!

Come back to our original formula:

                                       1 + 3 + 5 = 3*3

How many numbers are on the left side of the above equality? That's right: 3 !

Follow the same reasoning for other numbers as it is done below:

Example: roll a 6-sided dice to receive amount of number participants in the game:

e.g., Roll #1 = 5 and you make equality of 5 members. Always start from 1 and add 2 to get next number:
                                                                1 + 3 + 5 + 7 + 9 = 5*5
next: Roll #2 = 2, then 1 + 3 = 2*2
Roll #3 = 6, then 1 + 3 + 5 + 7 + 9 + 11 = 6*6
Roll #4 = 4, then 1 + 3 + 5 + 7 = 4*4
Roll #5 = 1, then 1 = 1*1
Game: roll 5 times and count the sum of all 5 rolls. The highest sum wins. swear

Let's count our 5 rolls: 25 + 4 + 36 + 16 + 1 = 82.

Roll your dice 5 times and try to reach that 82.

Your turn...give me your Roll #1 = ___ wave

#14 Re: Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2007-03-13 03:45:13

Here is an example with rational numbers:

-10.9 - 9.8 - 8.7 - 7.6 = 4 * [(-10.9 + -7.6) / 2] = 4 * [(-18.5) / 2] = 4 * (-9.25) = -37

May you bring your example with rational numbers? wave

Now come back to our original puzzle!

                                                               PascalTriangleAnimated2.gif
                                                                                      Pascal Triangle

#15 Re: Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2007-03-12 09:16:59

... breaking down the puzzle dizzy:

                                                                                         boymath.gif

if 

,

so we have that X1 + X2 + ... + Xn = a * b for a = n and b = (X1 + Xn)/2:

Now it is your turn:
2 + 4 + 6  = _ * [( _ + __ ) / 2] = _ * _  ?

Next, may you bring an example with integers? wave

“The Lady Tasting Tea. How Statistics Revolutionized Science in the XXth Century” by David Salsburg. The book author described discovery of the five-year-old in a few sentences (p.138, Chapter 14. THE MOZART OF MATHEMATICS). It does deserve our playfull minds... let's have fun and may  even create a game on the numbers right here.

#16 Re: Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2007-03-09 10:35:46

up - good discussion!

Simple “discovery” is most often a deceptive one. It usually contains a surprise element. The magic is not in what it contains, but rather in what it doesn’t. rolleyes

1 + 3 + 5 = 3*3 … what principle does it contain and what it does not?

If  1 + 3 + 5 = 3^2, does  2 + 4 + 6 = 4^2 ?... Obviously not.

Find the play (rule/formula) for multiples a and b, which would work for both:

for


and for 
.

When you find the a * b rule, then determine if the same rule plays out for
natural, whole, integers, rational, irrational numbers X1, X2, …
in equation 

. Give some examples.

                                                     numbers-school-life_~u10761759.jpg

Now come back to  1 + 3 + 5 = 3*3 and see the hidden simplicity in it.
Mozart music also contains the highest level of deceptive simplicity,
which Albert Einstein recognized and adored in his violin journey.

#17 Puzzles and Games » 1+3=2^2, 1+3+5=3^2, 1+3+5+7=4^2 etc. » 2007-03-06 11:51:38

skymus
Replies: 24

Hi! Are you ready for a G A M E ? Go to Post #12 (see #s right) and have fun!roflol!
____________________________________________________

Here is a little preview:     

This was discovered by 5 year old boy who later was called Mozart of mathematics.

What's his name?

                                                              child-study-child_~u19361731.jpg

Board footer

Powered by FluxBB