Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1626 Yesterday 15:34:11

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 48,218

Re: crème de la crème

2088) Theodor W. Hänsch

Gist

Work

According to quantum physics, light and other electromagnetic radiation appear in the form of quanta, packets with fixed energies, which also correspond to energy transitions in atoms. Consequently, determining the frequency of light waves provides information about the atoms’ properties, benchmarks for time and length, and the possibility of determining physical constants. Around the year 2000, Theodor Hänsch and John Hall developed the frequency comb technique, in which laser light with a series of equidistant frequencies is used to measure frequencies with great precision.

Summary

Theodor W. Hänsch (born October 30, 1941, Heidelberg, Germany) is a German physicist who shared one-half of the 2005 Nobel Prize for Physics with John L. Hall for their contributions to the development of laser spectroscopy, the use of lasers to determine the frequency (color) of light emitted by atoms and molecules. (The other half of the award went to Roy J. Glauber.)

Hänsch received a Ph.D. in physics from the University of Heidelberg in 1969. The following year he moved to the United States and began teaching at Stanford University. In 1986 he returned to Germany to become director of the Max Planck Institute for Quantum Optics, a post he held until 2016. He also joined the faculty at Ludwig Maximilians University.

Hänsch’s prizewinning research centered on measuring optical frequencies (frequencies of visible light). Although a procedure known as an optical frequency chain had already been created to measure such frequencies, it was extremely complex and could be performed in only a few laboratories. In the late 1970s Hänsch originated the idea for the optical frequency comb technique, in which ultrashort pulses of laser light create a set of precisely spaced frequency peaks that resemble the evenly spaced teeth of a hair comb. The technique offered a practical way of obtaining optical frequency measurements to an accuracy of 15 digits, or one part in one quadrillion. Hänsch, using key contributions by Hall, worked out the theory’s details in 2000.

The success of Hall and Hänsch soon led to the development of commercial devices with which very precise optical frequency measurements could readily be made. Their work had a number of practical applications, including the improvement of satellite-based navigation systems, such as the Global Positioning System (GPS), and the synchronization of computer data networks. Physicists also used the two men’s findings to verify Albert Einstein’s theory of special relativity to very high levels of precision and to test whether the values of fundamental physical constants related to optical frequencies were indeed constant or changed slightly over time.

Details

Theodor Wolfgang Hänsch (born 30 October 1941) is a German physicist. He received one-third of the 2005 Nobel Prize in Physics for "contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique", sharing the prize with John L. Hall and Roy J. Glauber.

Hänsch is Director of the Max-Planck-Institut für Quantenoptik (quantum optics) and Professor of experimental physics and laser spectroscopy at the Ludwig-Maximilians University in Munich, Bavaria, Germany.

Biography

Hänsch received his secondary education at Helmholtz-Gymnasium Heidelberg and gained his Diplom and doctoral degree from Ruprecht-Karls-Universität Heidelberg in the 1960s. Subsequently, he was a NATO postdoctoral fellow at Stanford University with Arthur L. Schawlow from 1970 to 1972. Hänsch became an assistant professor at Stanford University, California from 1975 to 1986. He was awarded the Comstock Prize in Physics from the National Academy of Sciences in 1983. In 1986, he received the Albert A. Michelson Medal from the Franklin Institute. In the same year Hänsch returned to Germany to head the Max-Planck-Institut für Quantenoptik. In 1989, he received the Gottfried Wilhelm Leibniz Prize of the Deutsche Forschungsgemeinschaft, which is the highest honour awarded in German research. In 2005, he also received the Otto Hahn Award of the City of Frankfurt am Main, the Society of German Chemists and the German Physical Society. In that same year, the Optical Society of America awarded him the Frederic Ives Medal and the status of honorary member in 2008.

One of his students, Carl E. Wieman, received the Nobel Prize in Physics in 2001.

In 1970 he invented a new type of laser that generated light pulses with an extremely high spectral resolution (i.e. all the photons emitted from the laser had nearly the same energy, to a precision of 1 part in a million). Using this device he succeeded to measure the transition frequency of the Balmer line of atomic hydrogen with a much higher precision than before. During the late 1990s, he and his coworkers developed a new method to measure the frequency of laser light to an even higher precision, using a device called the optical frequency comb generator. This invention was then used to measure the Lyman line of atomic hydrogen to an extraordinary precision of 1 part in a hundred trillion. At such a high precision, it became possible to search for possible changes in the fundamental physical constants of the universe over time. For these achievements he became co-recipient of the Nobel Prize in Physics for 2005.

Background to Nobel Prize

The Nobel Prize was awarded to Professor Hänsch in recognition for work that he did at the end of the 1990s at the Max Planck Institute in Garching, near Munich, Germany. He developed an optical "frequency comb synthesiser", which makes it possible, for the first time, to measure with extreme precision the number of light oscillations per second. These optical frequency measurements can be millions of times more precise than previous spectroscopic determinations of the wavelength of light.

The work in Garching was motivated by experiments on the very precise laser spectroscopy of the hydrogen atom. This atom has a particularly simple structure. By precisely determining its spectral line, scientists were able to draw conclusions about how valid our fundamental physical constants are – if, for example, they change slowly with time. By the end of the 1980s, the laser spectroscopy of hydrogen had reached the maximum precision allowed by interferometric measurements of optical wavelengths.

The researchers at the Max Planck Institute of Quantum Optics thus speculated about new methods, and developed the optical frequency comb synthesizer. Its name comes from the fact that it generates a light spectrum out of what are originally single-colour, ultrashort pulses of light. This spectrum is made of hundreds of thousands of sharp spectral lines with a constant frequency interval.

Such a frequency comb is similar to a ruler. When the frequency of a particular radiation is determined, it can be compared to the extremely acute comb spectral lines, until one is found that "fits". In 1998, Professor Hänsch received a Philip Morris Research Prize for the development of this "measurement device".

One of the first applications of this new kind of light source was to determine the frequency of the very narrow ultraviolet hydrogen 1S-2S two-photon transition. Since then, the frequency has been determined with a precision of 15 decimal places.

The frequency comb now serves as the basis for optical frequency measurements in large numbers of laboratories worldwide. Since 2002, the company Menlo Systems, in whose foundation the Max Planck Institute in Garching played a role, has been delivering commercial frequency comb synthesizers to laboratories all over the world.

Laser development

Hänsch introduced intracavity telescopic beam expansion to grating tuned laser oscillators thus producing the first narrow-linewidth tunable laser. This development has been credited with having had a major influence in the development of further narrow-linewidth multiple-prism grating laser oscillators. In turn, tunable narrow-linewidth organic lasers, and solid-state lasers, using total illumination of the grating, have had a major impact in laser spectroscopy.

hansch-13715-portrait-mini-2x.jpg


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

Board footer

Powered by FluxBB