You are not logged in.
Hi;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
The solution SP # 73 is perfect! Neat work!
SP # 74. Let there be an Arithmetic Progression with first term 'a', common difference 'd'. If
denotes the 'n'th term and be the sum of first 'n' terms, findIt appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Hi;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
The solution SP # 74 (both parts) is correct! Awesome!
SP # 75. Find the sum of the first 25 terms of an Arithmetic Progression whose 'n'th term is given by
.It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Hi;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
The solution SP # 75 is correct! Splendid!
SP # 76. How many multiples of 4 lie between 10 and 250?
(Very tired. Talk to you later, bobbym!)
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Hi;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
The solution SP # 76 is correct! Neat work!
SP # 77. How many three digit numbers are divisible by 7?
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Hi;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
The solution SP # 77 is correct! Good work!
SP # 78. Which term of the Arithmetic Progression 8, 14, 20, 26, .... will be 72 more than its 41st term?
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Hi;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
The solution SP # 78 is correct! Marvelous, bobbym!
SP # 79. Which term of the Arithmetic Progression 3, 15, 27, 39, .... will be 120 more than its 21st term?
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Hi;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
The solution SP # 79 is correct! Good work!
SP # 80. Find the common difference of the Arithmetic Progression
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Hi;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
The solution SP # 80 is correct! Good work!
SP # 81. The first term of a Geometric Progression is -5 and the common ratio is -2. Find the 10th amd 20th term.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Hi;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
The solution SP # 81 (both parts) are correct! Immaculate, bobbym!
SP # 82. Three numbers are in an Arithmetic Progression and their sum is 15. If 1, 3, 9 are are added to them respectively, they form a Geometric Progression. Find the numbers.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Hi;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
.
Neat work, bobbym!
SP # 83. Find the least value of 'n' for which the sum
to 'n' terms is greater than 7000.It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Hi;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
The solution SP # 83 is correct'! Good work!
SP # 84. Find the sum to 'n' of the Geometric Progression 7 + 77 + 777 + ... 'n' terms.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Hi;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
The solution SP # 84 is correct! Magnificent!
SP # 85. The sum of an infinite series in Geometric Progression is 57 and their cubes is 9747. Find the series.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Hi;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline