Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: √ ∞ ≠ ≤ ≥ ≈ ⇒ ∈ Δ θ ∴ ∑ ∫ π -

Login

Username

Password

Not registered yet?

#1 2013-12-11 17:15:20

Stangerzv
Full Member

Online

Prime Number with (mod3) I Hope it could be new one.

I have encountered a new property in which I hope nobody has found it yet.

The equation is given as follows:

If p is prime and greater than 3 then,



In other words,

If p is prime then

is a whole number.

Prime generated y is given as follows:

y(7)=- 90825083
y(47)=33333333333333333333333333333315800289254723317
y(79)=3 333333333333333333333333333333333333333333333333333333333330177241305791050933
y(83)=33333333333333333333333333333333333333333333333333333333333333328161319604264715517

 

#2 2013-12-11 21:18:01

Nehushtan
Power Member

Offline

Re: Prime Number with (mod3) I Hope it could be new one.

This can be easily proved. Since p is not divisible by 3, we have



This comes from the fact that the square of any integer not divisible by 3 is congruent to 1 (mod 3). Also



since 10 ≡ 1 (mod 3). Thus



NB: The result is true if p is any positive integer not divisible by 3.


134 books currently added on Goodreads
 

#3 2013-12-11 23:09:39

Stangerzv
Full Member

Online

Re: Prime Number with (mod3) I Hope it could be new one.

Thanks for the proof:) Basically, y also can be prime for odd composite p (i.e. p=299) but I am limiting it only to prime p for making it harder to find.

Last edited by Stangerzv (2013-12-11 23:41:31)

 

Board footer

Powered by FluxBB