Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#201 2017-04-17 18:58:47

iamaditya
Member
From: Planet Mars
Registered: 2016-11-15
Posts: 602

Re: crème de la crème

ganesh wrote:

Hi iamaditya,

Thanks for the views and comments. Regarding making it 'Sticky', MathsIsFun decides.

Cant moderators make an article a "sticky" one. Well if not then I'm sure bobbym can do it.

P.S.-Again an excellent article. Is this ur hobby,ganesh to find good information and write about it. If yes, then keep it up!

Another doubt: There is a section in MIFF named "Ganesh's Puzzles". I thought you created it, but now I think MIF did. Am I right? If yes then ask him to create anothet section.....
Where you can store these articles in various topics such as Singers, dancers, musicians, scientists and so on. Eventually you will set up another Wikipedia here!


Practice makes a man perfect.
There is no substitute to hard work
All of us do not have equal talents but everybody has equal oppurtunities to build their talents.-APJ Abdul Kalam

Offline

#202 2017-04-17 19:45:48

ganesh
Moderator
Registered: 2005-06-28
Posts: 23,041

Re: crème de la crème

Thanks again, iamaditya! This is a hobby for a long time (compiling data).

MathsIsFun encouraged me and that is how "Ganesh's Puzzles" commenced.

Regarding Mathematicians, Scientists, Writers and other celebrities, I put these in  'Dark Discussions at Cafe Infinity: crème de la crème'.


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#203 2017-04-17 21:24:55

ganesh
Moderator
Registered: 2005-06-28
Posts: 23,041

Re: crème de la crème

168. Thomas Cook, (born November 22, 1808, Melbourne, Derbyshire, England - died July 18, 1892, Leicester, Leicestershire), English innovator of the conducted tour and founder of Thomas Cook and Son, a worldwide travel agency. Cook can be said to have invented modern tourism.

Cook left school at the age of 10 and worked at various jobs until 1828, when he became a Baptist missionary. In 1841 he persuaded the Midland Counties Railway Company to run a special train between Leicester and Loughborough for a temperance meeting on July 5. It was believed to have been the first publicly advertised excursion train in England. Three years later the railway agreed to make the arrangement permanent if Cook would provide passengers for the excursion trains. During the Paris Exposition of 1855, Cook conducted excursions from Leicester to Calais, France. The next year he led his first Grand Tour of Europe.

In the early 1860s he ceased to conduct personal tours and became an agent for the sale of domestic and overseas travel tickets. His firm took on military transport and postal services for England and Egypt during the 1880s. On his death the business passed to his only son, John Mason Cook (1834-99), who had been his father’s partner since 1864. The company passed to Cook’s grandsons in 1899 and remained in the family until 1928. In 1972 the company was renamed Thomas Cook, and in 2001 it was wholly owned by Thomas Cook AG, one of the largest travel groups in the world.

thomascook.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#204 2017-05-04 23:57:24

ganesh
Moderator
Registered: 2005-06-28
Posts: 23,041

Re: crème de la crème

169. Augustin-Jean Fresnel
Born : 10 May 1788, Broglie, Kingdom of France (now Eure, France); Died : 14 July 1827 (aged 39), Ville-d'Avray, Kingdom of France, (now Hauts-de-Seine, France).
Augustin-Jean Fresnel (10 May 1788 - 14 July 1827), was a French engineer and physicist who contributed significantly to the establishment of the theory of wave optics. Fresnel studied the behaviour of light both theoretically and experimentally.
He is perhaps best known as the inventor of the Fresnel lens, first adopted in lighthouses while he was a French commissioner of lighthouses, and found in many applications today. His Fresnel equations on waves and reflectivity also form the basis for many applications in computer graphics today - for instance, the rendering of water.
Personal life and education
Fresnel was the son of an architect, born at Broglie (in present-day Eure). His early progress in learning was slow, and he still could not read when he was eight years old. At thirteen he entered the École Centrale in Caen, and at sixteen and a half the École Polytechnique, where he acquitted himself with distinction. From there he went to the École des Ponts et Chaussées.
He received only scant public recognition during his lifetime for his labours in the cause of optical science. Some of his papers were not printed by the Académie des Sciences until many years after his death. But as he wrote to Young in 1824: in himself "that sensibility, or that vanity, which people call love of glory" had been blunted. "All the compliments," he says, "that I have received from Arago, Laplace and Biot never gave me so much pleasure as the discovery of a theoretic truth, or the confirmation of a calculation by experiment".
Fresnel has been described as a man with interest in religious questions and deep faith in God. As a form of consolation, he took religion very seriously especially during his illness.
He spent much of his life in Paris, and died of tuberculosis at Ville-d'Avray, near Paris. His is one of the 72 names inscribed on the Eiffel Tower. The writer Prosper Mérimée (1803-1870) was his first cousin.
Career
He served as an engineer successively in the departments of Vendée, Drôme and Ille-et-Vilaine; but having supported the Bourbons in 1814 he lost his appointment on Napoleon's return to power. He appears to have begun his research in optics around 1814, when he prepared a paper on the aberration of light, although it was never published. In 1815, on the second restoration of the monarchy, he obtained a post as engineer in Paris.
In 1818 he wrote a memoir on diffraction, for which he received the prize of the Académie des Sciences at Paris the following year. He was the first to construct a special type of lens, now called a Fresnel lens, as a substitute for mirrors in lighthouses. In 1819, he was nominated to be a commissioner of lighthouses. In 1823 he was unanimously elected a member of the academy. In 1825 he became a Fellow of the Royal Society of London. In 1827, the time of his last illness, the Royal Society of London awarded him the Rumford Medal.
In 1818 he published his Memoir on the Diffraction of Light, submitted to the Academe of science in 1818. His discoveries and mathematical deductions, building on experimental work by Thomas Young, extended the wave theory of light to a large class of optical phenomena, especially, to the double-refraction property of Iceland Spar, or calcite.
In 1817, Young had proposed a small transverse component to light, while yet retaining a far larger longitudinal component. Fresnel, by the year 1821, was able to show by mathematical methods that polarization could be explained only if light was entirely transverse, with no longitudinal vibration whatsoever. He proposed the aether drag hypothesis to explain a lack of variation in astronomical observations. His use of two plane mirrors of metal, forming with each other an angle of nearly 180°, allowed him to avoid the diffraction effects caused (by the apertures) in the experiment of F. M. Grimaldi on interference. This allowed him to conclusively account for the phenomenon of interference in accordance with the wave theory.
With François Arago he studied the laws of the interference of polarized rays. He obtained circularly polarized light by means of a rhombus of glass, known as a Fresnel rhomb, having obtuse angles of 126° and acute angles of 54°. The Fresnel–Arago laws are three laws which summarise some of the more important properties of interference between light of different states of polarization. The laws are as follows:
1. Two orthogonal, coherent linearly polarized waves cannot interfere.
2. Two parallel coherent linearly polarized waves will interfere in the same way as natural light.
3. The two constituent orthogonal linearly polarized states of natural light cannot interfere to form a readily observable interference pattern, even if rotated into alignment (because they are incoherent).
The Fresnel equations describe the behaviour of light when moving between media of differing refractive indices. When light moves from a medium of a given refractive index n1 into a second medium with refractive index n2, both reflection and refraction of the light may occur.
The Fresnel diffraction equation is an approximation of Kirchhoff-Fresnel diffraction that can be applied to the propagation of waves in the near field. It is used to calculate the diffraction pattern created by waves passing through an aperture or around an object, when viewed from relatively close to the object. In contrast the diffraction pattern in the far field region is given by the Fraunhofer diffraction equation.

standard_fresnel_augustin.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

Board footer

Powered by FluxBB