Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 Re: Help Me ! » Formula For the Sum Of the First N Squares » 2011-05-16 00:57:09

1^3+2^3+...+n^3+(n+1)^3  = 0^3+1^3+2^3+3^3+...+n^3+...
  \______  _____/                                 \_______  ________/
              \/                                                         \/
                these terms      cancel            these terms            .

So only the (n+1)^3 is left on the left side of the equation.

Thanks for your help!

#2 Re: Help Me ! » Formula For the Sum Of the First N Squares » 2011-05-16 00:01:19

1^3 =  (0 + 1)^3   = 0^3     +  3 ( 0^2 )   +  3 (0)    + 1
2^3 =  (1 + 1)^3   = 1^3     +  3 ( 1^2 )   +  3 (1)    + 1
3^3 =  (2 + 1)^3   = 2^3     +  3 ( 2^2 )   +  3 (2)    + 1
4^3 =  (3 + 1)^3   = 3^3     +  3 ( 3^2 )   +  3 (3)    + 1
            etc.
n^3 =  (n-1 + 1)^3 = (n-1)^3 +  3 (n-1)^2   +  3 (n-1)  + 1

(n+1)^3 =  (n + 1)^3   = n^3     +  3  n^2      +  3  n     + 1
----------------------------------------------------------------------

Hi bob,

Im sorry i couldnt understand

As 0 cubed is 0 the cubes on the RHS are the same as on the Left except for the one you are asking about.

im not sure which one you are referring to.

They wanted me to cancel out n^3 (in bold) but since

(n + 1)^3   = n^3     +  3  n^2      +  3  n     + 1

, wouldnt cancelling n^3 makes it not balanced?

Thanks!

#3 Help Me ! » Formula For the Sum Of the First N Squares » 2011-05-15 21:42:22

rainboi
Replies: 5

Hi all,

I refer to "http://mathforum.org/library/drmath/view/56920.html"

I followed the steps on how I should proof 4081e80094a0ed782f84d6ad5c20e32f.png

But im stucked at

"1.  All of the cubes cancel except for (n+1)^3"

I have no idea why this step is needed. Can anyone help me please? Thank you.

Board footer

Powered by FluxBB