Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 Re: Help Me ! » numerical method » 2015-01-03 20:55:18

for calculating error
e= (m'' nh^3)/12
where m" is double differentiation of function
but if so true than y we say thAt trepoziam rule gives a truncation error of order h^2?

for accuracy i dont know

#2 Re: Help Me ! » numerical method » 2015-01-03 20:48:47

i dont know formula for calculating error and accuracy

#3 Re: Help Me ! » numerical method » 2015-01-03 20:46:51

how u got the answere for first question?
how to calculate accuracy?

#4 Re: Help Me ! » numerical method » 2015-01-03 20:44:23

they dont want any curve fit, just simple trapezoid integration of discrete data

#5 Help Me ! » matrix » 2015-01-03 20:42:59

Gate2015
Replies: 1

i have some confusion in understanding vector in matrix.i have some question in thsese topics,
help in solving them

Q1: http://imgur.com/xmj690v&0txIRga#0
Q2: http://i.imgur.com/0txIRga.png?1

#6 Re: Help Me ! » numerical method » 2015-01-03 20:29:18

Q3: http://imgur.com/p7ru15j
Q4: http://imgur.com/U8QLgVI

#7 Re: Help Me ! » numerical method » 2015-01-03 20:22:48

Question 1: http://imgur.com/A0sMTfL
Question 2:http://imgur.com/ctN7Muq

#8 Re: Help Me ! » numerical method » 2015-01-03 19:39:10

they use integration any many symbol
okkk i try to write it

#10 Re: Help Me ! » numerical method » 2015-01-03 19:32:47

I dont know how to put image here
tell me

#11 Help Me ! » numerical method » 2015-01-03 19:25:02

Gate2015
Replies: 17

plz tell me how to solve following questions:

[img]file://home/sm/Documents/doubt/Screenshot%20from%202014-12-31%2019:45:12.png[/img]


[img]file://home/sm/Documents/doubt/Screenshot%20from%202014-12-31%2019:47:52.png[/img]

#12 Help Me ! » Matrix problems » 2015-01-03 19:04:59

Gate2015
Replies: 11

plz solve left two question:

7. Show that if abab = aabb, then it must be that ab = ba.
8. Show that the matrix [1 2][2 1] * [3 2][1 2] does not equal [3 2][1 2] * [1 2][2 1] (It may be noted that matrices of integers are groups). This would mean that matrices are not abelian.

Board footer

Powered by FluxBB