Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 Re: Jokes » More Clean Jokes - XXVIII » 2024-07-18 00:20:58

Jai Ganesh wrote:

This is intended for jokes.

I was trying to post a thread for collecting my jokes but it got deleted quickly. I don't want to create too many threads.

#2 Re: Jokes » Tips to improve your writing » 2024-07-18 00:16:24

Simile is like an arrow, breaking the critic's heart.
Metaphor is a real arrow, a deadly arrow.
Personification will make the critic's pen run crazily.
Hyperbole is deadly. Don't use it.
Alliteration arrangements are absolutely awful.

#3 Re: Jokes » More Clean Jokes - XXVIII » 2024-07-17 23:51:46

Uh? My thread quickly got deleted.

#4 This is Cool » The "2023" number sequence » 2023-12-20 08:07:49

ColorfulGalaxy
Replies: 0

The year 2023 is coming to an end.
Here is a sequence that mentioned "2023":

N+

It starts out with: 2, 4, 8, 16, 32, 64...

Guess who discovered it and when it was discovered?

Note: I'm sorry. This post may be a duplicate.

#5 Maths Is Fun - Suggestions and Comments » Desmos user guide request » 2022-12-11 10:38:00

ColorfulGalaxy
Replies: 1

I posted this the other day, and realized that our website needed a Desmos user guide and I'd like to have one created.

#6 Puzzles and Games » Geometric Conscript Cipher Challenge » 2022-12-04 05:53:12

ColorfulGalaxy
Replies: 0

This page introduces a large number of "alternative writing systems" for the English language, some of which have some interesting geometrical properties.

Some of these geometric writing systems gives more freedom on the letters' size, position, or shapes, such as Exprish or Circular Gallifreyan. Others may used a fixed shape for each letter, such as Graph Script and ABB Gallifreyan.

In this challenge, you are given a code that should be copied and pasted into Desmos. Then, try to read what you see on the graph as a text in one of the conscript ciphers.
You may also try transcribing a piece of text you like in one of the conscript ciphers using math equations, and copying the equations from Desmos line by line into a text file.

For example, this code decodes to "ColorfulGalaxy" in Circular Gallifreyan.

x^{2}+y^{2}=100\ \left\{x<10-\frac{y}{\sqrt{3}}\right\}\left\{y<\frac{159}{16}\right\}\left\{14x+8y>-160\right\}
x^{2}+\left(y+7\right)^{2}=5
\left(x-6\right)^{2}+\left(y+4\right)^{2}=5
\left(x-15\right)^{2}+\left(y-5\sqrt{3}\right)^{2}=100\left\{x<10-\frac{y}{\sqrt{3}}\right\}
x^{2}+\left(y-8\right)^{2}=5\ \left\{y<\frac{159}{16}\right\}
\left(x+6\right)^{2}+\left(y-4\right)^{2}=5
\left(x+7\right)^{2}+\left(y+4\right)^{2}=5\left\{14x+8y>-160\right\}
x^{2}+y^{2}=18
x^{2}+\left(y+2\right)^{2}=4
\left(x-3\right)^{2}+\left(y-3\right)^{2}=4
\left(x+4\right)^{2}+y^{2}=4
y=2x+8\left\{-5<y<6\right\}\left\{\left(x+7\right)^{2}+\left(y+4\right)^{2}>5\right\}
\left(x+y-7\right)\left(x+y-8\right)=0\left\{x^{2}+\left(y-8\right)^{2}>5\ \right\}\left\{\left(x-3\right)^{2}+\left(y-3\right)^{2}>4\right\}\left\{4<y<8\right\}
\left(x-2\right)^{2}+\left(y+6\right)^{2}=0.25
\left(x-7\right)^{2}+\left(y+2\right)^{2}=0.25
x^{2}+\left(y-8\right)^{2}=0.25
x=0\left\{8.5<y<12\right\}
\left(x+6\right)^{2}+\left(y+9\right)^{2}=0.25
\left(x-3\right)^{2}+\left(y+4\right)^{2}=0.25
\left[\left(-6,5\right),\left(-5,3\right),\left(-7,3\right),\left(-3,1\right),\left(-3,-1\right),\left(0,-1\right),\left(1,-3\right),\left(-1,-3\right),\left(1,-7\right),\left(-1,-7\right),\left(0,-6\right),\left(0,-8\right),\left(6,-3\right),\left(7,-5\right),\left(5,-5\right),\left(6,6\right),\left(7,4\right),\left(8,3\right)\right]
x^{2}+y^{2}=144
x^{2}+y^{2}=160

Here is the first task:

u=0
f_{rx}\left(x,y,\theta\right)=x\cos\theta+y\sin\theta
f_{ry}\left(x,y,\theta\right)=y\cos\theta-x\sin\theta
f_{mod}\left(x,m\right)=\frac{m}{\pi}\arctan\left(\tan\frac{x\pi}{m}\right)
g_{n}\left(x,y\right)=\sqrt{x^{2}+y^{2}}
g_{t}\left(x,y\right)=\operatorname{abs}\left(x\right)+\operatorname{abs}\left(y\right)
g_{s1}\left(x,y\right)=\left(x^{2}-y^{2}\right)f_{rx}\left(x,y,0\right)
g_{sh1}\left(x,y\right)=f_{rx}\left(x,y,0\right)f_{rx}\left(x,y,-\frac{\pi}{16}\right)f_{rx}\left(x,y,-\frac{\pi}{8}\right)f_{rx}\left(x,y,-\frac{3\pi}{16}\right)f_{rx}\left(x,y,-\frac{\pi}{4}\right)
g_{k}\left(x,y\right)=f_{ry}\left(x,y,0\right)f_{rx}\left(x,y-1,-\frac{\pi}{6}\right)\left(x^{2}+y^{2}\right)
g_{j}\left(x,y\right)=f_{ry}\left(x,y,0\right)f_{rx}\left(x,y+1,\frac{\pi}{6}\right)\left(g_{n}\left(x+\frac{1}{3\sqrt{3}},y+\frac{1}{3\sqrt{3}}\right)-\frac{1}{3\sqrt{6}}\right)
g_{l}\left(x,y\right)=\prod_{n=0}^{9}\left(y-n\right)
g_{w}\left(x,y\right)=f_{ry}\left(x,y,0\right)\left(y-\operatorname{abs}\left(x\right)+1\right)

y^{2}=484\left\{-6<x<12\right\}
\left(x+6\right)\left(x-12\right)=0\left\{\left|y\right|<x+22+6\right\}
y^{2}=121\left\{6<x<12\right\}
x=6\left\{y^{2}<121\right\}
y^{2}=16\left\{12<x<\frac{44}{3}\right\}
x=\frac{44}{3}\left\{y^{2}<16\right\}
10=g_{n}\left(x,y\right)\left\{x<-6\right\}
x+y=10\left\{f_{mod}\left(-u,16\right)<f_{mod}\left(y-x,16\right)+\left[-16,0,16\right]<f_{mod}\left(-u,16\right)+2\right\}\left\{x>6\right\}\left\{y>-4\right\}
f_{mod}\left(x-y,16\right)=f_{mod}\left(u-1,16\right)\left\{9<x+y<11\right\}\left\{6<x<\frac{44}{3}\right\}\left\{y>-4\right\}
f_{mod}\left(x-\frac{u}{2}-11.5,8\right)^{2}+f_{mod}\left(y+\frac{u}{2}+1.5,8\right)^{2}=0.5\ \left\{6<x<\frac{44}{3}\right\}\left\{y>-4\right\}\left\{8<x+y<12\right\}
g_{1}\left(x,y\right)=g_{n}\left(f_{rx}\left(x,y,-\frac{\pi u}{16}-\frac{\pi}{8}\right)-8,f_{ry}\left(x,y,-\frac{\pi u}{16}-\frac{\pi}{8}\right)\right)
\left[1,2\right]=g_{1}\left(x,y\right)
0=g_{s1}\left(f_{rx}\left(f_{rx}\left(x,y,-\frac{\pi u}{16}-\frac{\pi}{8}\right)-8,f_{ry}\left(x,y,-\frac{\pi u}{16}-\frac{\pi}{8}\right),-\frac{3\pi u}{64}\right),f_{ry}\left(f_{rx}\left(x,y,-\frac{\pi u}{16}-\frac{\pi}{8}\right)-8,f_{ry}\left(x,y,-\frac{\pi u}{16}-\frac{\pi}{8}\right),-\frac{3\pi u}{64}\right)\right)\left\{2>g_{1}\left(x,y\right)\right\}
f_{rx}\left(x,y,-\frac{\pi u}{16}-\frac{\pi}{8}\right)=8\left\{2<f_{ry}\left(x,y,-\frac{\pi u}{16}-\frac{\pi}{8}\right)<5\right\}
f_{ry}\left(x,y,-\frac{\pi u}{16}-\frac{\pi}{8}\right)=3\left\{7<f_{rx}\left(x,y,-\frac{\pi u}{16}-\frac{\pi}{8}\right)<9\right\}
14=x\left\{f_{mod}\left(\frac{u}{8},8\right)-2<f_{mod}\left(y,8\right)+\left[-16,-8,0,8,16\right]<f_{mod}\left(\frac{u}{8},8\right)+2\right\}\left\{y^{2}<16\right\}
f_{mod}\left(\frac{u}{8},8\right)=y\left\{13.5<x<14.5\right\}
0=g_{l}\left(x,6\left(f_{mod}\left(y-\frac{u}{8},8\right)\right)+10.5\right)\left\{13.625<x<13.875\right\}\left\{y^{2}<16\right\}

g_{n}\left(x-5,y-6\right)=\left[\frac{3}{2},2\right]
g_{sh1}\left(x-5,y-6\right)=0\left\{g_{n}\left(x-5,y-6\right)<\frac{3}{2}\right\}
x=5\left\{8<y<10\right\}
y=9\left\{4<x<6\right\}
\left[\left(0,0\right)\right]

Hint: It's written in Timescript.
Notes on the code in the first task:
1. The "u" variable indicates time. Click the button below the play button on Desmos and set the cycling mode to "one-way cycle" (the second option) instead of "round-trip cycle" in order that the shapes do not travel in the wrong direction. The period of the rotation is 128 in this case.
2. The reason why the time variable is not named "t" is that "t" is ambiguous. If "t" is used, then Desmos may wrongly render the /h/ (h in house) phoneme symbol as lines or circles instead of the expected dots in the chart.
3. The built-in function "mod" on Desmos proved to be buggy. Therefore, the self-defined "f_mod" function is used, though it doesn't actually work the same way as the "mod" function.
4. If you want to transcribe your own piece of text, we suggest that you should not make the left side of the equation consist of a single variable name or a single function call unless when you are actually defining variables or functions. Try swapping the sides of the equations. See also this post.
5. Please zoom out a little to see the whole shape. However, for some reason (probably a bug), the symbol representing the "l" in the last word may flicker (or simply vanish) even when the graph is zoomed out slightly.
6. If you want to transcribe your text in Timescript, you can use the following template: 

u=0
f_{rx}\left(x,y,\theta\right)=x\cos\theta+y\sin\theta
f_{ry}\left(x,y,\theta\right)=y\cos\theta-x\sin\theta
f_{mod}\left(x,m\right)=\frac{m}{\pi}\arctan\left(\tan\frac{x\pi}{m}\right)
g_{n}\left(x,y\right)=\sqrt{x^{2}+y^{2}}
g_{t}\left(x,y\right)=\operatorname{abs}\left(x\right)+\operatorname{abs}\left(y\right)
g_{s1}\left(x,y\right)=\left(x^{2}-y^{2}\right)f_{rx}\left(x,y,0\right)
g_{sh1}\left(x,y\right)=f_{rx}\left(x,y,0\right)f_{rx}\left(x,y,-\frac{\pi}{16}\right)f_{rx}\left(x,y,-\frac{\pi}{8}\right)f_{rx}\left(x,y,-\frac{3\pi}{16}\right)f_{rx}\left(x,y,-\frac{\pi}{4}\right)
g_{k}\left(x,y\right)=f_{ry}\left(x,y,0\right)f_{rx}\left(x,y-1,-\frac{\pi}{6}\right)\left(x^{2}+y^{2}\right)
g_{j}\left(x,y\right)=f_{ry}\left(x,y,0\right)f_{rx}\left(x,y+1,\frac{\pi}{6}\right)\left(g_{n}\left(x+\frac{1}{3\sqrt{3}},y+\frac{1}{3\sqrt{3}}\right)-\frac{1}{3\sqrt{6}}\right)
g_{l}\left(x,y\right)=\prod_{n=0}^{9}\left(y-n\right)
g_{w}\left(x,y\right)=f_{ry}\left(x,y,0\right)\left(y-\operatorname{abs}\left(x\right)+1\right)

#7 Re: Puzzles and Games » Phronaunsiashon » 2022-11-30 18:25:01

CurlyBracket wrote:

Lukh aeth dees! Yiu khanut yoondherstan veedaoth phronoaunseeng dees!

Yeesn't aeth phanny?

Lath's ci haw menni pippael yoodherstan dees maesej. smile

Look at this! You can't understand without pronouncing this!

Isn't it* funny?

Let's see how many people understand this message.

#8 Maths Is Fun - Suggestions and Comments » Deleted post » 2022-11-14 09:30:51

ColorfulGalaxy
Replies: 4

Excuse me. They said that I had 10 posts but only 9 showed up. Where is the other one?
I guess I must have broken the rules, but I didn't even receive an email message.

#9 Re: Jokes » Mathematics jokes » 2022-10-19 12:02:18

ganesh wrote:

This topic relates to jokes alone, ColorfulGalaxy!

What do you mean? Should I just post jokes?

#10 Re: Jokes » Mathematics jokes » 2022-10-18 12:29:56

ColorfulGalaxy wrote:
ganesh wrote:

If I could rearrange the alphabet, I'd put "U" and "I" together.

The inventor of the QWERTY keyboard managed to do so.

The Dvorak keyboard also has U and I together.

#11 Re: Introductions » Hello? A chinese high school student » 2022-10-16 23:35:02

Qocor wrote:

My maths is good,and you can send a letter for me to talk about the maths problems(I am sorry ,my English is poor)

I can actually see your post.
Do you live in China?

#12 Re: Jokes » Mathematics jokes » 2022-10-14 18:12:32

ganesh wrote:

If I could rearrange the alphabet, I'd put "U" and "I" together.

The inventor of the QWERTY keyboard managed to do so.

#13 Re: Introductions » Forum Features » 2022-10-12 18:55:22

biscuit
This post has been eaten by a biscuit

#14 Re: Jokes » Mathematics jokes » 2022-10-12 00:53:23

Today is October 12, which can also be seen as September 42. "9.42" is approximately equal to 3 times pi.

Knock knock.
Who's there?
Triangle
Triangle who
It's "Triangle WHO". Notice the capitalization!

#15 Re: Jokes » Mathematics jokes » 2022-10-11 15:16:09

Knock Knock.
Who's There?
Triangle
Triangle who
It's "Triangle WHO". Notice the capitalization!

Board footer

Powered by FluxBB