Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#26 Re: Help Me ! » solve me this graph of Function plzzz » 2009-09-12 05:04:47

Hi dear Avva
According  to the graph the range is R-{3} provided that the domain is  R-{0} and the circle on(0,3) is empty
Best Wishes
Riad Zaidan

#27 Re: Help Me ! » nth term » 2009-09-11 06:12:17

Hi joyh
Sorry..............Is This a question or a joke?????????????????=)
Bye

#28 Re: Help Me ! » Standard Deviation » 2009-09-11 06:05:25

Hi Identity ,
If you can -please- tell me first how I can  write the notations of the mean ,the standard deviation,....since it is difficult to write these notations directly and the answer I think is easy!!!!!!!!!!!!
Thanks
Riad Zaidan

#29 Re: Help Me ! » Finding limits of indetermined forms WITHOUT L'Hopitals Rule » 2009-09-11 03:47:17

Hi Tobal
for the first function :
The left handside is -∞ and the right handside is  ∞ so the limit does not exist.
for the second function :
The left handside is ∞ and the right handside is  - ∞ so the limit does not exist.
for the third function :
Both left and right limits are ∞ since the denominator is squared.
for the forth function :
The left handside is ∞ and the right handside is  - ∞ so the limit does not exist.
to see the forth
the sign of the denominator when x is less and close to 1  is +ve
and the sign of the denominator when x is greater  and close to 1  is -ve so the two limits do not concide and the limit does not exist , and so for the rest functions
Best Wishes
Riad Zaidan

#30 Re: Help Me ! » Finding limits of indetermined forms WITHOUT L'Hopitals Rule » 2009-09-11 03:35:29

Hi Tobal
For the first limit we have:
lim sqrt(x+6) + x  does not exist since the function is undefined for all x<-6
x ⇒-6-
lim sqrt(x+6) + x=0+(-6)=-6
x ⇒-6+

#31 Re: Introductions » Hi! » 2009-09-07 04:44:05

Hi to all,
I am very pleased with our fellows on this site, although I am teaching at a university and I participate my freinds some ideas concerning mathematics.......thanks for all that whom are dealing with site
greatings for all
salam

#32 Re: Puzzles and Games » Tough Inequality » 2009-09-03 09:43:16

Hi bobbym
I am online now just to say hi
Riad Zaidan

#33 Re: Exercises » Complex numbers » 2009-09-03 09:21:29

Hi Daniel123
this is the proof for natural n:
√3+i=2(√3/2  + (1/2)i)=2(cos 30° +i sin(30° ))  r=2 ,  theta=30° then by demoivers theorem

(√3+i)^n=2^n(cos n(30°) +i sin( n (30° ))  and similarly

√3-i=2(√3/2  - (1/2)i)=2(cos 330° +i sin(330° ))  r=2 ,  theta=30° then by demoivers theorem

(√3-i)^n=2^n(cos n(330°) +i sin( n (330° ))   therefore

(√3+i)^n+(√3-i)^n=2^n(cos n(30°) +i sin( n (30° ))+ 2^n(cos n(330°)+i sin( n (330° )) but
sin( n (30°))=- sin( n (330° )) therefore the imaginary part cancells and the result is in R or
(√3+i)^n+(√3-i)^n=2^n(cos n(30°)+2^n(cos n(330°) but cos n(30°)=(cos n(330°) i.e
(√3+i)^n+(√3-i)^n=2(2^n(cos n(30°))=2^(n+1)   (cos n(30°) ∈R
Best Regards
Riad Zaidan

#34 Re: Exercises » High Scohol Mathematics - Trignometry II » 2009-09-03 09:04:11

Hi  ganesh 
(1)               sin(15°)=sin(45°-30°)=sin(45°)cos(30°)-cos(45°)sin(30°

                               =(1/√2)(√3/2)-(1/√2)(½)=(√3-1)/2√2

salam

#35 Re: Help Me ! » Approximating Ln(2) » 2009-09-02 08:28:25

Hi SgtDawkins
I think that you can do the following:
  1+x+x²+... =1/(1-x) infinite geometric siries  or equavelently
1/(1-x)=1+x+x²+...  by substituting  1-x=z so  x=1-z we get
1/z=1+(1-z)+(1-z)²+...   
∫1/zdz=∫(1+(1-z)+(1-z)²+...)dz  by integrating both sides w.r.t  z
⇒ln(z)=z-((1-z)^2)/2-((1-z)^3)/3-...+ c  where c is a constant
put z=1 we have  ln(1)=1-0+0-0+...+c  ⇒ 0=1+c  so c=-1 therefore
ln(z)=z-((1-z)^2)/2-((1-z)^3)/3-...-1
so  substitute z=2 we get
ln(2)=2-1/2+1/3-1/4+1/5-1/6+...-1
        ln(2) ≈ 1-(1/2)+(1/3)-(1/4)+(1/5)-(1/6)+...
or  ln(2)≈0.64563 as Mr juriguen got
Best wishes
Riad Zaidan

#36 Re: Exercises » r is a root » 2009-09-01 18:45:11

Hi Dear JaneFairfax
I will be very pleased to contact you if possible
rzaidan@qou.edu

#37 Re: Maths Is Fun - Suggestions and Comments » Lines in Algebra » 2009-08-31 22:34:24

Hi MathsIsFun
Thanks very  much for you  for these pages

#38 Re: Help Me ! » Double integral » 2009-08-30 08:59:56

Hi Identity
I think that the proff is as follows:
If we can seperate h(x,y) as  h(x,y)=f(x)g(y) and x and y are independent variables  then
∫∫h(x,y)dxdy=∫∫f(x)g(y)dxdy=∫(g(y)(∫f(x)dx)) dy   by considering g(y) as a constant w.r.t  x
Also ∫f(x)dx can be considered as a constant w.r.t y  so   
∫∫f(x)g(y)dxdy=∫(g(y)(∫f(x)dx) )dy sad∫f(x)dx)(∫g(y) dy) as requiered
I hope that I am right
Best regards
Riad Zaidan

#39 Re: Help Me ! » tangent plane/normal vector » 2009-08-26 22:58:33

Hi dear  Onyx:
You asked the following:
Also can someone tell me what was wrong with my method of parameterization?
The answer is :
the problem was of the point  P(1,3,2) does not lie on the given surface ,  so when you change the constant 20 into 21 in order to have the point on the surface and repeat the procedures you have done , every thing will be right. Try this by yourself.
Best Regards
Riad Zaidan

#40 Re: Help Me ! » tangent plane/normal vector » 2009-08-20 03:21:49

Dear Onyx
I think I found the problem:
The point (1,3,2) does not lie on the surface   x^2* y +3yz=20 so you may change 20 into 21
in order to have a point on that surface then you have the following:
z=21/3y - x^2/3   or  f(x,y)=7/y - x^2 / 3 so
df/dx=-2x/3  so df/dx  (p)  =  -2/3
df/dy=-7/(y^2)  so df/dy  (p)  =- 7/9  therefore
the  tnagent plane H to the surface is -2/3(x-1)- 7/9(y-3)-(z-2)=0 or
6x+7y+9z=45 and the normal to the plane is n=6i+7j+9k as wanted.
But why the value of 20 does not infuence my way because when diff. 20 or 21 gives 0.
Note: afunction of four variables is very difficult to be drawn in the plane , so we use the level syrfaces on which  f  is constant.

Best Regards
Riad Zaidan

#41 Re: Help Me ! » tangent plane/normal vector » 2009-08-17 08:28:47

Dear Onyx
Here is the solution

the point  P(1,3,2) lies on the plane

x^2* y +3yz=20  rewriting the equation as follows

x^2* y +3yz-20=0 so let 

f=x^2* y +3yz-20

df/dx=2xy  so df/dx  (p)  =  2(1)(3)=6

df/dy=x^2+3z  so df/dy  (p)  = 7

df/dz=3y  so df/dz  (p)  =9

so the normal   n = 6i+7j+9k

and the  tnagent plane H to the surface is 6(x-1)+7(y-3)+9(z-2)=0 or

6x+7y+9z=45

Best Regards
Riad Zaidan

#42 Re: Exercises » A few exs for test-preparation » 2009-08-17 00:57:56

Dear Ubergeek

for no. 3:
Assume that the no. of right exercises = x and no. of wrong exercises = y
Therefore
x+y=50       ⇒          y=50-x
and
5x-3y=130 ......(1) substitute  y=50-x  in  (1) you get   5x-3(50-x)=130
or
5x-150+3x=130

8x=280    x= 35   ,    y=  15
so the no. of right exercises = 35

the no. of wrong exercises = 15

For no. (4)

Assume that the age of the first = x  now
                   the age of the second= y  now
therefore x+y=30          y=30 - x
before 8 years (x-8)(y-8)=48..........(1)  but  y=30 - x

(x-8)(30-x-8)=48  so (x-8)(22-x)=48 

22x-x^2-176+8x=48  ⇒  x^2-30x+224=0  ⇒  (x-16)(x-14)=0
x=16     and    y=14 or

x=14   and     y=16
So the older brother's nowadays age = 16
Best Wishes
Riad Zaidan

#43 Re: Exercises » Pre-University Mathematics » 2009-08-16 08:39:06

Hi ganesh

problem no.  6:

First we choose the three neighbouring positions for the girls by 5 ways so

they can be seated by   5 * 4! * 3! =5(4)(3)(2)(1)*(3)(2)(1)=720 ways


Best Regards

Riad Zaidan

Online

#44 Re: Exercises » Pre-University Mathematics » 2009-08-16 08:33:08

Hi ganesh

problem no.  5:

The number of arrangements= 2 * 6! * 4!
                     
                                           2*6(5)(4)(3)(2)(1)*4(3)(2)(1)

Notice that the 2 in the expression denotes the number of cases for the side can be chosen

(  left or right of the line)

Best Regards

Riad Zaidan

#45 Re: Exercises » Pre-University Mathematics » 2009-08-16 08:27:44

Hi ganesh

problem no.  4:

The no. of diagonals= a(a-3)/2
               

The no. of triangles= aC3=a(a-1)(a-2)/3*2*1

Best Regards

Riad Zaidan

Online

#46 Re: Exercises » Pre-University Mathematics » 2009-08-16 08:24:24

Hi ganesh

problem no.  3 :

The no. of ways = (6C3)(4C2)= 6(5)(4)/3(2)(1) *  4(3)/2(1)

                 =20*6=120


Best Regards

Riad Zaidan

#47 Re: Exercises » Pre-University Mathematics » 2009-08-16 08:20:09

Hi ganesh

problem no.  7 :

6(nC3)=7((n-1)C3)

6*n(n-1)(n-2)/(3*2*1) =  7 (n-1)(n-2)(n-3)/(3*2*1) so by cancellation ((Hint :  n ≥3))

6n  =  7(n-3)  or   6n = 7n - 21  so n=21

Best Regards

Riad Zaidan

#48 Re: Exercises » Question Bank : Age Group 16-17 : I » 2009-08-16 08:09:07

Hi ganesh;

For the fifth problem:


The  foci are (4,0) and (-4,0) and  e=1/3 the foci are on the x-axis with center on (0,0)

   c = 4  but   e=c/a   so   c/a= 1/3   and  we have 

4/a=1/3   so  a =12 but  c^2 = a^2 - b^2 or  b^2=a^2-c^2=144-16=128

so the requiered equation is

(x^2)/144 +  (y^2)/128   =    1


Best Regards
Riad Zaidan

#49 Re: Exercises » Question Bank : Age Group 16-17 : I » 2009-08-16 08:00:57

Hi ganesh;

For the sixth problem:

Assume that

y= x^3-5x^2+5x+8 and differentiate both sides w.r.t  (t) we get:

dy/dt=(3 x^2 - 10 x + 5) (dx/dt)  ...........(1)

but  dy/dt  =2 *  (dx/dt)  so  substitute  in   (1)    we  have the following:

  2  (dx/dt) =(3 x^2 - 10 x + 5) (dx/dt)  so  if dx/dt ≠0 we  get 

2   =  3 x^2 - 10 x + 5  therfore

3 x^2 - 10 x + 3 = 0  so   

(3x-1)(x-3)=0   so   

either  x= 1/3   or    x= 3    Q.E.D 

Best Regards
Riad Zaidan

#50 Re: Exercises » Question Bank : Age Group 16-17 : I » 2009-08-15 22:11:24

Hi ganesh
For the forth problem:
dy/dx  + xy =x
dy/dx=x-xy=x(1-y)
dy/(1-y )=x dx
∫dy/(1-y )=∫x dx
-ln(1-y) sad x²) /2 + c
ln(1/(1-y))=( x²) /2 + c ⇒
1/(1-y)=e^(( x²) /2 + c) ⇒
1-y = 1/(e^(( x²) /2 + c))
y=1-1/(e^(( x²) /2 + c)) and you can simplify more
Best Regards
Riad Zaidan

Board footer

Powered by FluxBB