Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#51 Re: Exercises » Question Bank : Age Group 16-17 : I » 2009-08-15 22:03:58

Hi ganesh
For the third problem:
w=x+2y+z^2  ,   x= cos(t) ,  y = sin(t)   ,   z=t

dw/dt sad dw/dx)(dx/dt)+ (dw/dy)(dy/dt)+( dw/dz)(dz/dt)
   
         =1(-sin (t) + 2(cos (t)  + 2 z (1)

          = -sin(t)+2 cos(t) + 2z 

Best Regards
Riad Zaidan

#52 Re: Exercises » Question Bank : Age Group 16-17 : I » 2009-08-15 02:32:40

Hi ganesh
For the second problem:
Assume that the angle between the  sides of fixed length is θ, so
A = ½(4)(5) sin θ=10 sin θ where  A is the area of triangle at any time ,  so 
dA/dt =10 cos θ  (dθ/dt) when θ=pi/3 and dθ/dt = 0.06
dA/dt =10 cos (pi/3) * 0.06
         =10 (½)(0.06)=0.3

Best Regards
Riad Zaidan

#53 Re: Exercises » Integration by Substitution » 2009-08-15 02:12:30

Hi Identity
  This can be noticed from the derivative of ln(sec x + tan x) + C which is
                                              sec x tan x + sec^2 x      sec x ( tan x + sec x )
(d/dx) (ln(sec x + tan x) + C)=__________________  =  ___________________  =  sec x
                                                  secx  + tan x                    sec x + tan x

Best Regards
Riad Zaidan

#54 Re: Exercises » Integration by Substitution » 2009-08-13 23:08:34

Hi Identity
                                                              sec x + tan x
∫ (1/cos x) dx=∫ sec x dx=∫ sec x ______________      dx
                                                              sec x + tan x

                                       (sec x)^2 + sec x tan x
                               ∫      ___________________  dx
                                          sec x + tan x
   = ln(sec x + tan x) + C since the numerator is the derivative of the denominator.
Best Regards
Riad Zaidan

#55 Re: Help Me ! » When can this be simplified? » 2009-08-13 20:11:47

Dear bobbym
thanks for your attention , and I am very pleased with you.
Best Wishes

Board footer

Powered by FluxBB