Discussion about math, puzzles, games and fun. Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ π -¹ ² ³ °

You are not logged in.

- Topics: Active | Unanswered

Pages: **1**

**ganesh****Administrator**- Registered: 2005-06-28
- Posts: 39,681

**Rolle's theorem**

In calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one stationary point somewhere between them—that is, a point where the first derivative (the slope of the tangent line to the graph of the function) is zero. The theorem is named after Michel Rolle.

**Standard version of the theorem**

If a real-valued function f is continuous on a proper closed interval [a, b], differentiable on the open interval (a, b), and f (a) = f (b), then there exists at least one c in the open interval (a, b) such that

This version of Rolle's theorem is used to prove the mean value theorem, of which Rolle's theorem is indeed a special case. It is also the basis for the proof of Taylor's theorem.

**History**

Although the theorem is named after Michel Rolle, Rolle's 1691 proof covered only the case of polynomial functions. His proof did not use the methods of differential calculus, which at that point in his life he considered to be fallacious. The theorem was first proved by Cauchy in 1823 as a corollary of a proof of the mean value theorem. The name "Rolle's theorem" was first used by Moritz Wilhelm Drobisch of Germany in 1834 and by Giusto Bellavitis of Italy in 1846.

The theorem, that derivatives are zero at a maximum, was stated by Bhaskara II in his Siddhanta Shiromani, completed in 1150. Bhaskara II was part of the Kerala school of mathematics, and also theorized the derivatives of trigonometric functions.

It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

Pages: **1**