Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 2023-12-05 14:38:49

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 48,390

Quantum Mechanics

Quantum Mechanics

Gist

Quantum mechanics is a subfield of physics that describes the behavior of particles — atoms, electrons, photons and almost everything in the molecular and submolecular realm. 

Developed during the first half of the 20th century, the results of quantum mechanics are often extremely strange and counterintuitive.

At the scale of atoms and electrons, many of the equations of classical mechanics, which describe the movement and interactions of things at everyday sizes and speeds, cease to be useful.

In classical mechanics, objects exist in a specific place at a specific time. In quantum mechanics, objects instead exist in a haze of probability; they have a certain chance of being at point A, another chance of being at point B and so on.

Summary

Quantum mechanics is a fundamental theory in physics that describes the behavior of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science.

Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale.

Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values (quantization); measurements of systems show characteristics of both particles and waves (wave–particle duality); and there are limits to how accurately the value of a physical quantity can be predicted prior to its measurement, given a complete set of initial conditions (the uncertainty principle).

Quantum mechanics arose gradually from theories to explain observations that could not be reconciled with classical physics, such as Max Planck's solution in 1900 to the black-body radiation problem, and the correspondence between energy and frequency in Albert Einstein's 1905 paper, which explained the photoelectric effect. These early attempts to understand microscopic phenomena, now known as the "old quantum theory", led to the full development of quantum mechanics in the mid-1920s by Niels Bohr, Erwin Schrödinger, Werner Heisenberg, Max Born, Paul Dirac and others. The modern theory is formulated in various specially developed mathematical formalisms. In one of them, a mathematical entity called the wave function provides information, in the form of probability amplitudes, about what measurements of a particle's energy, momentum, and other physical properties may yield.

Details

Quantum mechanics is a science dealing with the behaviour of matter and light on the atomic and subatomic scale. It attempts to describe and account for the properties of molecules and atoms and their constituents—electrons, protons, neutrons, and other more esoteric particles such as quarks and gluons. These properties include the interactions of the particles with one another and with electromagnetic radiation (i.e., light, X-rays, and gamma rays).

The behaviour of matter and radiation on the atomic scale often seems peculiar, and the consequences of quantum theory are accordingly difficult to understand and to believe. Its concepts frequently conflict with common-sense notions derived from observations of the everyday world. There is no reason, however, why the behaviour of the atomic world should conform to that of the familiar, large-scale world. It is important to realize that quantum mechanics is a branch of physics and that the business of physics is to describe and account for the way the world—on both the large and the small scale—actually is and not how one imagines it or would like it to be.

The study of quantum mechanics is rewarding for several reasons. First, it illustrates the essential methodology of physics. Second, it has been enormously successful in giving correct results in practically every situation to which it has been applied. There is, however, an intriguing paradox. In spite of the overwhelming practical success of quantum mechanics, the foundations of the subject contain unresolved problems—in particular, problems concerning the nature of measurement. An essential feature of quantum mechanics is that it is generally impossible, even in principle, to measure a system without disturbing it; the detailed nature of this disturbance and the exact point at which it occurs are obscure and controversial. Thus, quantum mechanics attracted some of the ablest scientists of the 20th century, and they erected what is perhaps the finest intellectual edifice of the period.

Historical basis of quantum theory:

Basic considerations

At a fundamental level, both radiation and matter have characteristics of particles and waves. The gradual recognition by scientists that radiation has particle-like properties and that matter has wavelike properties provided the impetus for the development of quantum mechanics. Influenced by Newton, most physicists of the 18th century believed that light consisted of particles, which they called corpuscles. From about 1800, evidence began to accumulate for a wave theory of light. At about this time Thomas Young showed that, if monochromatic light passes through a pair of slits, the two emerging beams interfere, so that a fringe pattern of alternately bright and dark bands appears on a screen. The bands are readily explained by a wave theory of light. According to the theory, a bright band is produced when the crests (and troughs) of the waves from the two slits arrive together at the screen; a dark band is produced when the crest of one wave arrives at the same time as the trough of the other, and the effects of the two light beams cancel. Beginning in 1815, a series of experiments by Augustin-Jean Fresnel of France and others showed that, when a parallel beam of light passes through a single slit, the emerging beam is no longer parallel but starts to diverge; this phenomenon is known as diffraction. Given the wavelength of the light and the geometry of the apparatus (i.e., the separation and widths of the slits and the distance from the slits to the screen), one can use the wave theory to calculate the expected pattern in each case; the theory agrees precisely with the experimental data.

Early developments

Planck’s radiation law

By the end of the 19th century, physicists almost universally accepted the wave theory of light. However, though the ideas of classical physics explain interference and diffraction phenomena relating to the propagation of light, they do not account for the absorption and emission of light. All bodies radiate electromagnetic energy as heat; in fact, a body emits radiation at all wavelengths. The energy radiated at different wavelengths is a maximum at a wavelength that depends on the temperature of the body; the hotter the body, the shorter the wavelength for maximum radiation. Attempts to calculate the energy distribution for the radiation from a blackbody using classical ideas were unsuccessful. (A blackbody is a hypothetical ideal body or surface that absorbs and reemits all radiant energy falling on it.) One formula, proposed by Wilhelm Wien of Germany, did not agree with observations at long wavelengths, and another, proposed by Lord Rayleigh (John William Strutt) of England, disagreed with those at short wavelengths.

In 1900 the German theoretical physicist Max Planck made a bold suggestion. He assumed that the radiation energy is emitted, not continuously, but rather in discrete packets called quanta.

Einstein and the photoelectric effect

In 1905 Einstein extended Planck’s hypothesis to explain the photoelectric effect, which is the emission of electrons by a metal surface when it is irradiated by light or more-energetic photons. The kinetic energy of the emitted electrons depends on the frequency ν of the radiation, not on its intensity; for a given metal, there is a threshold frequency ν0 below which no electrons are emitted. Furthermore, emission takes place as soon as the light shines on the surface; there is no detectable delay. Einstein showed that these results can be explained by two assumptions: (1) that light is composed of corpuscles or photons, the energy of which is given by Planck’s relationship, and (2) that an atom in the metal can absorb either a whole photon or nothing.

Bohr’s theory of the atom

A major contribution to the subject was made by Niels Bohr of Denmark, who applied the quantum hypothesis to atomic spectra in 1913. The spectra of light emitted by gaseous atoms had been studied extensively since the mid-19th century. It was found that radiation from gaseous atoms at low pressure consists of a set of discrete wavelengths. This is quite unlike the radiation from a solid, which is distributed over a continuous range of wavelengths. The set of discrete wavelengths from gaseous atoms is known as a line spectrum, because the radiation (light) emitted consists of a series of sharp lines. The wavelengths of the lines are characteristic of the element and may form extremely complex patterns. The simplest spectra are those of atomic hydrogen and the alkali atoms (e.g., lithium, sodium, and potassium).

Bohr started with a model suggested by the New Zealand-born British physicist Ernest Rutherford. The model was based on the experiments of Hans Geiger and Ernest Marsden, who in 1909 bombarded gold atoms with massive, fast-moving alpha particles; when some of these particles were deflected backward, Rutherford concluded that the atom has a massive, charged nucleus. In Rutherford’s model, the atom resembles a miniature solar system with the nucleus acting as the Sun and the electrons as the circulating planets.

Quantum electrodynamics

The application of quantum theory to the interaction between electrons and radiation requires a quantum treatment of Maxwell’s field equations, which are the foundations of electromagnetism, and the relativistic theory of the electron formulated by Dirac. The resulting quantum field theory is known as quantum electrodynamics, or QED.

QED accounts for the behaviour and interactions of electrons, positrons, and photons. It deals with processes involving the creation of material particles from electromagnetic energy and with the converse processes in which a material particle and its antiparticle annihilate each other and produce energy. Initially the theory was beset with formidable mathematical difficulties, because the calculated values of quantities such as the charge and mass of the electron proved to be infinite. However, an ingenious set of techniques developed (in the late 1940s) by Hans Bethe, Julian S. Schwinger, Tomonaga Shin’ichirō, Richard P. Feynman, and others dealt systematically with the infinities to obtain finite values of the physical quantities. Their method is known as renormalization. The theory has provided some remarkably accurate predictions.

According to the Dirac theory, two particular states in hydrogen with different quantum numbers have the same energy. QED, however, predicts a small difference in their energies; the difference may be determined by measuring the frequency of the electromagnetic radiation that produces transitions between the two states. This effect was first measured by Willis E. Lamb, Jr., and Robert Retherford in 1947. Its physical origin lies in the interaction of the electron with the random fluctuations in the surrounding electromagnetic field. These fluctuations, which exist even in the absence of an applied field, are a quantum phenomenon.

ayTnhRypWyGEgi5zod4RAd-970-80.jpg.webp


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#2 2024-01-19 00:49:23

Shabbyza
Novice
Registered: 2024-01-18
Posts: 2

Re: Quantum Mechanics

In the context of your summary, it’s also interesting to explore how quantum mechanics is advancing today's technology, particularly in the field of quantum computing. A key concept here is the 'quantum volume score,' a metric used to evaluate the performance of a quantum computer. It provides a comprehensive measure of a quantum computer's capabilities, taking into account factors like the number of qubits, error rates, and the effectiveness of quantum gates and circuits.

Offline

#3 2024-01-19 03:59:26

KerimF
Member
From: Aleppo-Syria
Registered: 2018-08-10
Posts: 240

Re: Quantum Mechanics

Just a thought:

The matter in our universe (level 0) is formed by the universe of atoms (level -1).
This could lead us to also say that the matter in the atomic universe (level -1) is formed by the universe of sub-atoms (level -2).
And the matter in the sub-atomic universe (level -2) is formed by the universe of sub-sub-atoms (level -3).
etc.

In the opposite direction, our huge universe (level 0) could be seen by a much bigger universe (level 1) as a small piece of matter in it... the same view applies between (level 1) and (level 2)... etc.

Long ago, humans were aware of Earth as being the center of Existence.
Then, humans became aware of the huge universe (level 0)
Lately, humans became aware of the atomic universe (level -1)
Will humans exist long enough to be aware of the upper universe (level 1) and/or the next lower one (level -2)?

After all, it is just a thought.


Every living thing has no choice but to execute its pre-programmed instructions embedded in it (known as instincts).
But only a human may have the freedom and ability to oppose his natural robotic nature.
But, by opposing it, such a human becomes no more of this world.

Offline

Board footer

Powered by FluxBB