Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 2024-08-29 18:05:17

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 47,756

Catalysis

Catalysis

Gist

Catalysis is the process of adding a catalyst to facilitate a reaction. During a chemical reaction, the bonds between the atoms in molecules are broken, rearranged, and rebuilt, recombining the atoms into new molecules.

Summary

catalysis, in chemistry, the modification of the rate of a chemical reaction, usually an acceleration, by addition of a substance not consumed during the reaction. The rates of chemical reactions—that is, the velocities at which they occur—depend upon a number of factors, including the chemical nature of the reacting species and the external conditions to which they are exposed. A particular phenomenon associated with the rates of chemical reactions that is of great theoretical and practical interest is catalysis, the acceleration of chemical reactions by substances not consumed in the reactions themselves—substances known as catalysts. The study of catalysis is of interest theoretically because of what it reveals about the fundamental nature of chemical reactions; in practice, the study of catalysis is important because many industrial processes depend upon catalysts for their success. Fundamentally, the peculiar phenomenon of life would hardly be possible without the biological catalysts termed enzymes.

In a catalyzed reaction, the catalyst generally enters into chemical combination with the reactants but is ultimately regenerated, so the amount of catalyst remains unchanged. Since the catalyst is not consumed, each catalyst molecule may induce the transformation of many molecules of reactants. For an active catalyst, the number of molecules transformed per minute by one molecule of catalyst may be as large as several million.

Where a given substance or a combination of substances undergoes two or more simultaneous reactions that yield different products, the distribution of products may be influenced by the use of a catalyst that selectively accelerates one reaction relative to the other(s). By choosing the appropriate catalyst, a particular reaction can be made to occur to the extent of practically excluding another. Many important applications of catalysis are based on selectivity of this kind.

Since a reverse chemical reaction may proceed by reversal of the steps constituting the mechanism of the forward reaction, the catalyst for a given reaction accelerates the reaction in both directions equally. Therefore, a catalyst does not affect the position of equilibrium of a chemical reaction; it affects only the rate at which equilibrium is attained. Apparent exceptions to this generalization are those reactions in which one of the products is also a catalyst for the reaction. Such reactions are termed autocatalytic.

Cases are also known in which the addition of a foreign substance, called an inhibitor, decreases the rate of a chemical reaction. This phenomenon, properly termed inhibition or retardation, is sometimes called negative catalysis. Concentrations of the inhibitor may in some cases be much lower than those of the reactants. Inhibition may result from (1) a decrease in the concentration of one of the reactants because of complex formation between the reactant and the inhibitor, (2) a decrease in the concentration of an active catalyst (“poisoning” of the catalyst) because of complex formation between the catalyst and the inhibitor, or (3) a termination of a chain reaction because of destruction of the chain carriers by the inhibitor.

Details

Catalysis is the increase in rate of a chemical reaction due to an added substance known as a catalyst. Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quickly, very small amounts of catalyst often suffice; mixing, surface area, and temperature are important factors in reaction rate. Catalysts generally react with one or more reactants to form intermediates that subsequently give the final reaction product, in the process of regenerating the catalyst.

The rate increase occurs because the catalyst allows the reaction to occur by an alternative mechanism which may be much faster than the non-catalyzed mechanism. However the non-catalyzed mechanism does remain possible, so that the total rate (catalyzed plus non-catalyzed) can only increase in the presence of the catalyst and never decrease.

Catalysis may be classified as either homogeneous, whose components are dispersed in the same phase (usually gaseous or liquid) as the reactant, or heterogeneous, whose components are not in the same phase. Enzymes and other biocatalysts are often considered as a third category.

Catalysis is ubiquitous in chemical industry of all kinds. Estimates are that 90% of all commercially produced chemical products involve catalysts at some stage in the process of their manufacture.

The term "catalyst" is derived from Greek καταλύειν, kataluein, meaning "loosen" or "untie". The concept of catalysis was invented by chemist Elizabeth Fulhame, based on her novel work in oxidation-reduction experiments.

Heterogeneous catalysis

Heterogeneous catalysts act in a different phase than the reactants. Most heterogeneous catalysts are solids that act on substrates in a liquid or gaseous reaction mixture. Important heterogeneous catalysts include zeolites, alumina, higher-order oxides, graphitic carbon, transition metal oxides, metals such as Raney nickel for hydrogenation, and vanadium(V) oxide for oxidation of sulfur dioxide into sulfur trioxide by the contact process.

Diverse mechanisms for reactions on surfaces are known, depending on how the adsorption takes place (Langmuir-Hinshelwood, Eley-Rideal, and Mars-van Krevelen). The total surface area of a solid has an important effect on the reaction rate. The smaller the catalyst particle size, the larger the surface area for a given mass of particles.

A heterogeneous catalyst has active sites, which are the atoms or crystal faces where the substrate actually binds. Active sites are atoms but are often described as a facet (edge, surface, step, etc.) of a solid. Most of the volume but also most of the surface of a heterogeneous catalyst may be catalytically inactive. Finding out the nature of the active site is technically challenging.

For example, the catalyst for the Haber process for the synthesis of ammonia from nitrogen and hydrogen is often described as iron. But detailed studies and many optimizations have led to catalysts that are mixtures of iron-potassium-calcium-aluminum-oxide. The reacting gases adsorb onto active sites on the iron particles. Once physically adsorbed, the reagents partially or wholly dissociate and form new bonds. In this way the particularly strong triple bond in nitrogen is broken, which would be extremely uncommon in the gas phase due to its high activation energy. Thus, the activation energy of the overall reaction is lowered, and the rate of reaction increases. Another place where a heterogeneous catalyst is applied is in the oxidation of sulfur dioxide on vanadium(V) oxide for the production of sulfuric acid. Many heterogeneous catalysts are in fact nanomaterials.

Heterogeneous catalysts are typically "supported," which means that the catalyst is dispersed on a second material that enhances the effectiveness or minimizes its cost. Supports prevent or minimize agglomeration and sintering of small catalyst particles, exposing more surface area, thus catalysts have a higher specific activity (per gram) on support. Sometimes the support is merely a surface on which the catalyst is spread to increase the surface area. More often, the support and the catalyst interact, affecting the catalytic reaction. Supports can also be used in nanoparticle synthesis by providing sites for individual molecules of catalyst to chemically bind. Supports are porous materials with a high surface area, most commonly alumina, zeolites or various kinds of activated carbon. Specialized supports include silicon dioxide, titanium dioxide, calcium carbonate, and barium sulfate.

Homogeneous catalysis

Homogeneous catalysts function in the same phase as the reactants. Typically homogeneous catalysts are dissolved in a solvent with the substrates. One example of homogeneous catalysis involves the influence of H+ on the esterification of carboxylic acids, such as the formation of methyl acetate from acetic acid and methanol. High-volume processes requiring a homogeneous catalyst include hydroformylation, hydrosilylation, hydrocyanation. For inorganic chemists, homogeneous catalysis is often synonymous with organometallic catalysts. Many homogeneous catalysts are however not organometallic, illustrated by the use of cobalt salts that catalyze the oxidation of p-xylene to terephthalic acid.

History

The term "catalyst", broadly defined as anything that increases the rate of a process, is derived from Greek, meaning "to annul," or "to untie," or "to pick up". The concept of catalysis was invented by chemist Elizabeth Fulhame and described in a 1794 book, based on her novel work in oxidation–reduction reactions. The first chemical reaction in organic chemistry that knowingly used a catalyst was studied in 1811 by Gottlieb Kirchhoff, who discovered the acid-catalyzed conversion of starch to glucose. The term catalysis was later used by Jöns Jakob Berzelius in 1835 to describe reactions that are accelerated by substances that remain unchanged after the reaction. Fulhame, who predated Berzelius, did work with water as opposed to metals in her reduction experiments. Other 18th century chemists who worked in catalysis were Eilhard Mitscherlich who referred to it as contact processes, and Johann Wolfgang Döbereiner who spoke of contact action. He developed Döbereiner's lamp, a lighter based on hydrogen and a platinum sponge, which became a commercial success in the 1820s that lives on today. Humphry Davy discovered the use of platinum in catalysis. In the 1880s, Wilhelm Ostwald at Leipzig University started a systematic investigation into reactions that were catalyzed by the presence of acids and bases, and found that chemical reactions occur at finite rates and that these rates can be used to determine the strengths of acids and bases. For this work, Ostwald was awarded the 1909 Nobel Prize in Chemistry. Vladimir Ipatieff performed some of the earliest industrial scale reactions, including the discovery and commercialization of oligomerization and the development of catalysts for hydrogenation.

ImageForArticle_6408_16790546782468114.jpg


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

Board footer

Powered by FluxBB