Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 2009-03-02 03:46:32

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 48,406

Differential Calculus

1. Differentiate the following with respect to x.

(i)

(ii)

(iii)

2. Differentiate the following with respect to x.

(i)

(ii)

(iii)

3. Differentiate the following with respect to x.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

.


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#2 2009-03-09 20:02:26

lady einstein
Member
Registered: 2009-02-17
Posts: 7

Re: Differential Calculus

#2 i)
3 (3x^2 + 4x - 5)^2  *(6x + 4)

i beg to be pardoned for how i express my equations smile

Offline

#3 2009-03-10 02:17:06

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 48,406

Re: Differential Calculus

lady einstein,
Your answer is perfectly right!
The answer can be expressed in LaTeX by using the following code:-

This would produce:


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#4 2009-06-24 20:36:18

glenn101
Member
Registered: 2008-04-02
Posts: 108

Re: Differential Calculus

1.(i) e^x
    -----
     cos(x)

Using Quotient Rule:
Let u=e^x, v=cos(x)
     du/dx=e^x, dv/dx=-sin(x)

dy/dx=   v(du/dx)-u(dv/dx)
               --------------------
                           cos^2(x)
         =    cosx(e^x)-e^x(-sin(x))
               ----------------------------
                            cos^2(x)
     

              =       -e^x(-cos(x)+sin(x))
                   -------------------------
                             cos^2(x)


(ii)    log(x)
      ------------
        sin(x)
Using Quotient Rule:
Let u=log(x), v=sin(x)
     du/dx= 1/x,  dv/dx=cos(x)

dy/dx=       v(du/dx)-u(dv/dx)
                  ---------------------
                            v^2
        =        sinx(1/x)-logx(cos(x))
                   -------------------------
                                sin^2(x)

         =        sin(x)/x-logx(cos(x))
                    ---------------------------
                            sin^2(x)
2. (i) y=(3x^2+4x-5)^3
Using Chain Rule:
Let u = 3x^2+4x-5, y=u^3
     du/dx=6x+4       dy/du= 3u^2

      dy/dx= 3(3x^2+4x-5)^2*(6x+4)



    (ii) y=e^3x^2+2x+3
         dy/dx=6x+2e^3x^2+2x+3
3. (i) y=e^2xcos(3x)
Using Product Rule:
Let u = e^2x,  v=cos(3x)
      du/dx=2e^2x, dv/dx=-3sin(3x)

dy/dx= -e^2x(3sin(3x)+2e^2x(cos(3x))

           
I love Calculus:D
Also, just a suggestion Ganesh.
Could you perhaps make exercises for Integration?

Last edited by glenn101 (2009-06-24 20:39:45)


"If your going through hell, keep going."

Offline

#5 2009-06-25 09:05:53

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: Differential Calculus


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#6 2009-11-23 19:08:33

Denominator
Member
Registered: 2009-11-23
Posts: 220

Re: Differential Calculus

I think 2 ii is
(6x+2)e^(3x^2+2x+3)


koko28.png

Offline

Board footer

Powered by FluxBB