You are not logged in.
Oh, that's good.
I wasn't aware of that method. So I did what I knew already. If there were no real roots I would be stuck!
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
What you did is okay. Newtons iteration can get complex roots too.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Is it? How would I start for a complex root?
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
Sometimes Newtons goes off to the complex plane all by itself but usually you have to use a complex number as an initial guess.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Oh, cool. I'll check that.
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
Basically Newtons is not the right tool because it has many geometric type problems. There are other methods but Forman S. Acton recommends using a different iterative form for every problem.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
I thought Newton's was a good method, never found any problem with that.
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
It suffers from some defects. For one thing it needs to be close to a root. Also it sometimes flies out to the complex plane. Sometimes it converges on a false root. It is particularly weak when roots are close together or near an extremum. It is best used to hone in on a root when you are already close.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Oh, ok. So which method is good to avoid the problem?
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
None! Root finding and extracting is an art like the rest of math. There are hundreds of methods, each one has its ups and downs. When you combine it with the fact that you will need a computer then all the problems of the way computers do arithmetic come into play.
In short, when you see your favorite package get a root for you, it is a major miracle. A tribute to over 60 years of numerical analysis.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Everything because of calculus, salute to Newton and others!
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
Sir Isaac Newton was a great genius.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
He's my hero, ever since I knew about him!
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
Mine too. I also was very impressed with Euler.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Yes, Euler was a giant after Newton. I was particularly impressed that he published even after he went blind.
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
Yes, so much published work too. People were different then.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
New Problem!
I just saw this. Is it not amazing?
Hmmm, what is wrong?
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
Hi gAr;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
How?
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
Hi gAr;
That is not true when b < 0. Because as you saw.
To test ask Sage if that is true.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
You mentioned "For all a and b:", so I gave a counterexample.
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
And I'll stick to my answer: "Something's wrong with the square root"
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
Yes, because if you go over his proof line by line, that is where the error starts.
I see what you mean I left out the line that it is not always true for all a and b.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Also, check: http://en.wikipedia.org/wiki/Square_root#Notes
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline