You are not logged in.
Hi gAr;
I phrased my statement wrong and have corrected it in post #825, which you may not have seen. I was editing while you were posting.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
I saw that. Sorry for the discontinuity.
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
No problem. Actually it was my fault.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Okay, whatever!
I'm little confused here, is sqrt(-1) = ±i ? A complex plot tells so.
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
I am pretty sure the square root operator uses the principal value. The positive one.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Ok.
The plot shows ±i for the quadratic equation, sqrt(-1) is defined as i only.
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
Hi;
Yes, the sqrt(-1) is just i, the principal root. You can verify that by asking Sage what the sqrt(-1) is. What plot are you looking at?
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
I was looking at the complex plot of: x^2+1
Sage doesn't show plus or minus.
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
But it should output just i. The square root operator is defined that way so that square root is a function. What does your graph look like?
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Here's the graph x^2+1
And here's a fragment from the documentation of the function:
The magnitude of the output is indicated by the brightness (with zero being black and infinity being white) while the argument is represented by the hue (with red being positive real, and increasing through orange, yellow, ... as the argument increases).
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
Hi gAr;
That is a contour plot and that is a different thing. It can plot complex values so naturally it computes them.
If you solve the equation x^4 - 1 = 0 you will get the 4 roots of unity. But if you ask Sage if (1)^(1/4) equals -i he will say false. He will only say true to 1. The positive root.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Ok, it's called complex_plot in sage, so I was calling like that.
I tried ContourPlot in wolfram alpha, but it won't show.
And you are right about the comparison.
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
Hi gAr;
I have changed the above post. To a more meaningful example.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
Ok. I forgot what was there before!
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
I am not exactly familiar with how they compute those contour plots but you can go here to get a little bit more theory.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Ok, thank you.
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
By the way, I liked the way you went to the OEIS to look up that sequence. Good experimental math. That is not cheating. Research is part of solving any problem.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Oh, thanks. I actually wanted to know it myself.
I knew it was related to counting something, but still couldn't get it.
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
I understand. Nobody can get them all.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym,
Yes, it's frustrating to solve for 3 dice.
Continuing from there...
I got curious about the number of throws and calculated a few: Generating functions again!
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
Hi gAr;
What method did you use?
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
I used the same integral which you used.
Used numerical integration(Gauss quadrature), actual integration takes a long time.
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
That integral they came up with is amazing.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Yes, indeed!
Though I couldn't understand the theory behind it, not able to find many examples.
"Believe nothing, no matter where you read it, or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense" - Buddha?
"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."
Offline
Do not worry about that. That is cutting edge combinatorics. I also am lost in their explanation. The CCP is an open problem with many unanswered questions. Fortunately, we do not have to understand a formula to use it.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline