You are not logged in.
I have encountered a new property in which I hope nobody has found it yet.
The equation is given as follows:
If p is prime and greater than 3 then,
In other words,
If p is prime then
is a whole number.Prime generated y is given as follows:
y(59)=9090909090909090909090909090909090909090955556068481876491
y(3109)=9090909090909090909090909090 9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090909090909090909090909090909090909090
9090916761247679844122304328506045308491
Last edited by Stangerzv (2013-12-10 18:43:41)
Offline
The result is not true for p=11. However, if p is odd and not divisible by 11, then it will be true. Here is the proof.
Since p is odd, we have
since 10 ≡ −1 (mod 11). Also
by Fermats little theorem. (This only works if p is not divisible by 11.) Hence
Last edited by Nehushtan (2013-12-10 23:47:58)
240 books currently added on Goodreads
Offline
Thanks Nehustan, I didn't notice when p=11, the same applies to p=3 for mod(3).
Offline