You are not logged in.
Hi bobbym
I am getting
Last edited by anonimnystefy (2013-12-17 07:55:51)
Here lies the reader who will never open this book. He is forever dead.
Taking a new step, uttering a new word, is what people fear most. ― Fyodor Dostoyevsky, Crime and Punishment
The knowledge of some things as a function of age is a delta function.
Offline
What are you getting for the coefficient of x^50000?
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Sorry, that is the coefficient of 50000.
Here lies the reader who will never open this book. He is forever dead.
Taking a new step, uttering a new word, is what people fear most. ― Fyodor Dostoyevsky, Crime and Punishment
The knowledge of some things as a function of age is a delta function.
Offline
That is not what I am getting. See you in a bit.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
My recurrence is:
Last edited by anonimnystefy (2013-12-17 10:36:16)
Here lies the reader who will never open this book. He is forever dead.
Taking a new step, uttering a new word, is what people fear most. ― Fyodor Dostoyevsky, Crime and Punishment
The knowledge of some things as a function of age is a delta function.
Offline
The recurrence should only be for the numerator.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
It does not matter. The answer will be the same.
Here lies the reader who will never open this book. He is forever dead.
Taking a new step, uttering a new word, is what people fear most. ― Fyodor Dostoyevsky, Crime and Punishment
The knowledge of some things as a function of age is a delta function.
Offline
I suggest you try it first before saying that.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
The results are the same.
Here lies the reader who will never open this book. He is forever dead.
Taking a new step, uttering a new word, is what people fear most. ― Fyodor Dostoyevsky, Crime and Punishment
The knowledge of some things as a function of age is a delta function.
Offline
Could be because your recurrence is wrong.
Use this one:
RecurrenceTable[{a[n] ==
1/(-10000 +
n) (60005 a[-5 + n] - n a[-5 + n] + 50004 a[-4 + n] -
n a[-4 + n] + 40003 a[-3 + n] - n a[-3 + n] +
30002 a[-2 + n] - n a[-2 + n] + 20001 a[-1 + n] -
n a[-1 + n]), a[10000] == 1, a[10001] == 10000,
a[10002] == 50005000, a[10003] == 166716670000,
a[10004] == 416916712502500}, a, {n, 10000, 50000}] // Last;
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
I know exactly what's wrong.
Here lies the reader who will never open this book. He is forever dead.
Taking a new step, uttering a new word, is what people fear most. ― Fyodor Dostoyevsky, Crime and Punishment
The knowledge of some things as a function of age is a delta function.
Offline
What is wrong?
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
I am using the wrong GF!
Here lies the reader who will never open this book. He is forever dead.
Taking a new step, uttering a new word, is what people fear most. ― Fyodor Dostoyevsky, Crime and Punishment
The knowledge of some things as a function of age is a delta function.
Offline
Well, that will certainly cause a few problems. What will you do about that?
As soon as you get the correct answer you will see that there is an even bigger problem looming on the horizon. Also, then will come Part 3.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hello
I see the problem! When will you post part 3?
Offline
Part 3
Our problem is that the 2 methods provided agree for small problems but disagree on the large one. Why is this?
Before we can answer that we need to find out which answer is correct so we do the problem in a third way.
With 10000 throws of a die what is the coefficient of x^50000?
This is equivalent to the diophantine equation:
a1 + a2 + a3 + ... a10000 = 50000
with 1 <= a1,a2,...a10000 <= 6
We make a change of variable.
a1 = a1+1, a2 = a2+1, a3 = a3+1, ...a10000=a10000+1
we get
a1 + a2 + a3 + ... + a10000 +10000 = 50000
this becomes
The equation becomes
a1 + a2 + a3 + ... + a10000 = 40000
0 <= a1,a2,...,a10000 <= 5
with the answer being the coefficient of x^40000
The gf for that is:
You should recognize that
are the coefficients with no restrictions.
Now
Only the terms x^6 to x^39996 could possibly contribute to the coefficient of x^40000, making the final answer:
The whole process looks a lot like a PIE so it can be generalized to the following series. For,
with
In Mathematica speak:
r = 40000;
n = 10000;
m = 5;
ans = Binomial[r + n - 1, n - 1] +
Sum[(-1)^
k Binomial[n, k] Binomial[(r + n - 1) - (m + 1) k, n - 1], {k, 1,
Floor[r/(m + 1)]}];
To get the probability of the sum being 50000:
Which agrees with Part 2's answer. We can now safely say that the result in Part 1 is incorrect.
Okay, what went wrong?
Numerical methods are not infallible and some sort of round off error is destroying the precision of the complex analysis method. This happens and we should forgive those mathematicians who love it so much.
That method is typical of guys who think their beloved complex analysis is truly amazing and naively think what they know from textbooks works in the real world. Kaboobly doo!
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline