You are not logged in.
Pages: 1
I would like to announce a new unofficial record computation of the MRB constant that was finished on Sun 21 Sep 2014 18:35:06. I wonder if you can do better. It took 1 month 27 days 2 hours 45 minutes 15 seconds. I computed 3,014,991 digits of the MRB constant, (confirming my previous 2,00,000 or more digit computation was actually accurate to 2,009,993 digits), with Mathematica 10.0. I Used my version of Richard Crandall's code:
____________________________________________________________________________
(*Fastest (at MRB's end) as of 25 Jul 2014.*)
DateString[]
prec = 3000000;(*Number of required decimals.*)ClearSystemCache[];
T0 = SessionTime[];
expM[pre_] :=
Module[{a, d, s, k, bb, c, n, end, iprec, xvals, x, pc, cores = 12,
tsize = 2^7, chunksize, start = 1, ll, ctab,
pr = Floor[1.005 pre]}, chunksize = cores*tsize;
n = Floor[1.32 pr];
end = Ceiling[n/chunksize];
Print["Iterations required: ", n];
Print["end ", end];
Print[end*chunksize]; d = ChebyshevT[n, 3];
{b, c, s} = {SetPrecision[-1, 1.1*n], -d, 0};
iprec = Ceiling[pr/27];
Do[xvals = Flatten[ParallelTable[Table[ll = start + j*tsize + l;
x = N[E^(Log[ll]/(ll)), iprec];
pc = iprec;
While[pc < pr, pc = Min[3 pc, pr];
x = SetPrecision[x, pc];
y = x^ll - ll;
x = x (1 - 2 y/((ll + 1) y + 2 ll ll));];(*N[Exp[Log[ll]/ll],
pr]*)x, {l, 0, tsize - 1}], {j, 0, cores - 1},
Method -> "EvaluationsPerKernel" -> 4]];
ctab = ParallelTable[Table[c = b - c;
ll = start + l - 2;
b *= 2 (ll + n) (ll - n)/((ll + 1) (2 ll + 1));
c, {l, chunksize}], Method -> "EvaluationsPerKernel" -> 2];
s += ctab.(xvals - 1);
start += chunksize;
Print["done iter ", k*chunksize, " ", SessionTime[] - T0];, {k, 0,
end - 1}];
N[-s/d, pr]];
t2 = Timing[MRBtest2 = expM[prec];]; DateString[]
Print[MRBtest2]
MRBtest2 - MRBtest2M
_________________________________________________________________________.
I used a six core Intel(R) Core(TM) i7-3930K CPU @ 3.20 GHz 3.20 GHz with 64 GB of RAM of which only 16 GB was used.
t2 From the computation was {1.961004112059*10^6, Null}.
Offline
Hi;
Congratulations!
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Pages: 1