You are not logged in.
Just not zero?
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
I remember this, there is also the restriction of b ≠ x and c ≠ y
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Do you have one to see?
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
so we can write the expression as looking like:
ignoring all the constants.
Unfortunately Mathematica has a lot of trouble just trying to evaluate this integral for given b,c, so the sum looks hopeless.
Last edited by zetafunc (2016-11-25 10:06:42)
Offline
What did you use to get that asymptotic form for the Bessel function?
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
I looked it up in my supervisor's copy of Gradshteyn and Ryzhik. There is a version involving sin as well
Unfortunately, neither version is workable. I cannot even compute the integral over [1,2], putting b = c = 10, say.
Offline
Can you post the commands? My typing skills are notoriously bad.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Here is what the integral looks like in Mathematica over [1,2]*[1,2], not including the sum and putting the values b = c = 100 in.
Integrate[(Cos[Sqrt[x^2 + y^2] - 3*Pi/4]*
Cos[Sqrt[(100 - x)^2 + (100 - y)^2]])/((((x^2 + y^2)^(3/
4)))*((100 - x)^2 + (100 - y)^2)^(3/4)), {x, 1, 2}, {y, 1,
2}]
I've been running that all day and have not got anything though.
Last edited by zetafunc (2016-11-26 09:02:02)
Offline
Okay, thanks for posting that.
You can get a quick answer for this.
NIntegrate[
NIntegrate[(
Cos[Sqrt[x^2 + y^2] - (3 \[Pi])/4] Cos[
Sqrt[(100 - x)^2 + (100 - y)^2]])/((x^2 + y^2)^(
3/4) ((100 - x)^2 + (100 - y)^2)^(3/4)), {x, 1, 5}], {y, 1, 5}]
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
A couple of seconds.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Okay, try this instead:
NIntegrate[(Cos[Sqrt[x^2 + y^2] - 3*\[Pi]/4]*
Cos[Sqrt[(100 - x)^2 + (100 - y)^2]])/((((x^2 + y^2)^(3/
4)))*((100 - x)^2 + (100 - y)^2)^(3/4)), {x, 1, 5}, {y, 1,
5}]
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Thanks, this works very well. The question is how to get this to combine this with the sum. Going to try and see what NSum does.
EDIT: Sorry, didn't notice your post just now. I managed to get your original code (with the nested NIntegrates) to work after closing Mathematica fully.
Last edited by zetafunc (2016-11-26 09:38:02)
Offline
That is going to be another problem, could get very ugly.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
NIntegrate[
NIntegrate[(Cos[Sqrt[x^2 + y^2] - (3 \[Pi])/4] Cos[
Sqrt[(1 - x)^2 + (1 - y)^2]])/((x^2 + y^2)^(3/
4) ((1 - x)^2 + (1 - y)^2)^(3/4)), {x, 1, 1000}], {y, 1,
1000}]
produced 1.13796 in 89.72 seconds.
And here is what happens when trying a sum over one variable.
NSum[NIntegrate[
NIntegrate[(Cos[Sqrt[x^2 + y^2] - (3 \[Pi])/4] Cos[
Sqrt[(b - x)^2 + (10 - y)^2]])/((x^2 + y^2)^(3/
4) ((b - x)^2 + (10 - y)^2)^(3/4)), {x, 1, 1000}], {y, 1,
1000}], {b, 10, 12}]
produced 0.655201 in about 50 seconds. And that is with just 1 variable summed over 3 terms.
Currently running a double NSum with a double NIntegrate and that is producing lots and lots of errors, several of which include the words "catastrophic loss of precision".
EDIT:
NSum[NSum[
NIntegrate[
NIntegrate[(Cos[Sqrt[x^2 + y^2] - (3 \[Pi])/4] Cos[
Sqrt[(b - x)^2 + (c - y)^2]])/((x^2 + y^2)^(3/
4) ((b - x)^2 + (c - y)^2)^(3/4)), {x, 1, 10}], {y, 1,
10}], {b, 1, 10}], {c, 1, 10}]
produced 3.05475*10^16 in about 395 seconds.
Last edited by zetafunc (2016-11-26 09:50:53)
Offline
For values that cause forms like /0 there will be big problems.
My revised post only uses one NIntegrate and gets faster results.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
NSum[NIntegrate[(Cos[Sqrt[x^2 + y^2] - 3*\[Pi]/4]*
Cos[Sqrt[(b - x)^2 + (c - y)^2]])/((((x^2 + y^2)^(3/
4)))*((b - x)^2 + (c - y)^2)^(3/4)), {x, 1, 10}, {y, 1,
10}], {b, 1, 10}, {c, 1, 10}]
works a lot better and yielded 4.02468 in 16 seconds, surprisingly.
NSum[NIntegrate[(Cos[Sqrt[x^2 + y^2] - 3*\[Pi]/4]*
Cos[Sqrt[(b - x)^2 + (c - y)^2]])/((((x^2 + y^2)^(3/
4)))*((b - x)^2 + (c - y)^2)^(3/4)), {x, 1, 50}, {y, 1,
50}], {b, 1, 20}, {c, 1, 20}]
produced 3.72777 in 45.49 seconds.
NSum[NIntegrate[(Cos[Sqrt[x^2 + y^2] - 3*\[Pi]/4]*
Cos[Sqrt[(b - x)^2 + (c - y)^2]])/((((x^2 + y^2)^(3/
4)))*((b - x)^2 + (c - y)^2)^(3/4)), {x, 1, 500}, {y, 1,
500}], {b, 1, 20}, {c, 1, 20}]
produced 4.23585 in 198.92 seconds.
Last edited by zetafunc (2016-11-26 10:02:02)
Offline
It might be alternating.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Alternating series have the Leibniz property and they can be bounded.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline