Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#26 2021-11-25 02:44:02

ganesh
Administrator
Registered: 2005-06-28
Posts: 34,872

Re: Some special numbers

37) Harshad number

In mathematics, a harshad number (or Niven number) in a given number base is an integer that is divisible by the sum of its digits when written in that base. Harshad numbers in base n are also known as n-harshad (or n-Niven) numbers. Harshad numbers were defined by D. R. Kaprekar, a mathematician from India. The word "harshad" comes from the Sanskrit harṣa (joy) + da (give), meaning joy-giver. The term "Niven number" arose from a paper delivered by Ivan M. Niven at a conference on number theory in 1977.

Definition

Stated mathematically, let X be a positive integer with m digits when written in base n, and let the digits be

(It follows that
must be either zero or a positive integer up to
. X can be expressed as


X is a harshad number in base n if:

A number which is a harshad number in every number base is called an all-harshad number, or an all-Niven number. There are only four all-harshad numbers: 1, 2, 4, and 6. The number 12 is a harshad number in all bases except octal.


Examples

The number 18 is a harshad number in base 10, because the sum of the digits 1 and 8 is 9 (1 + 8 = 9), and 18 is divisible by 9.
The Hardy–Ramanujan number (1729) is a harshad number in base 10, since it is divisible by 19, the sum of its digits (1729 = 19 × 91).
The number 19 is not a harshad number in base 10, because the sum of the digits 1 and 9 is 10 (1 + 9 = 10), and 19 is not divisible by 10.


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#27 Yesterday 21:35:38

ganesh
Administrator
Registered: 2005-06-28
Posts: 34,872

Re: Some special numbers

38) Hypercomplex numbers

Some number systems that are not included in the complex numbers may be constructed from the real numbers in a way that generalize the construction of the complex numbers. They are sometimes called hypercomplex numbers. They include the quaternions H, introduced by Sir William Rowan Hamilton, in which multiplication is not commutative, the octonions, in which multiplication is not associative in addition to not being commutative, and the sedenions, in which multiplication is not alternative, neither associative nor commutative.

In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers. The study of hypercomplex numbers in the late 19th century forms the basis of modern group representation theory.

A definition of a hypercomplex number is given by Kantor & Solodovnikov (1989) as an element of a finite-dimensional algebra over the real numbers that is unital but not necessarily associative or commutative. Elements are generated with real number coefficients

for a basis
. Where possible, it is conventional to choose the basis so that
. A technical approach to hypercomplex numbers directs attention first to those of dimension two.


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#28 Yesterday 21:50:06

ganesh
Administrator
Registered: 2005-06-28
Posts: 34,872

Re: Some special numbers

39) Transfinite numbers

For dealing with infinite sets, the natural numbers have been generalized to the ordinal numbers and to the cardinal numbers. The former gives the ordering of the set, while the latter gives its size. For finite sets, both ordinal and cardinal numbers are identified with the natural numbers. In the infinite case, many ordinal numbers correspond to the same cardinal number.

a) In set theory, an ordinal number, or ordinal, is one generalization of the concept of a natural number that is used to describe a way to arrange a (possibly infinite) collection of objects in order, one after another.

Any finite collection of objects can be put in order just by the process of counting: labeling the objects with distinct natural numbers. The basic idea of ordinal numbers is to generalize this process to possibly infinite collections and to provide a "label" for each step in the process. Ordinal numbers are thus the "labels" needed to arrange collections of objects in order.

An ordinal number is used to describe the order type of a well-ordered set (though this does not work for a well-ordered proper class). A well-ordered set is a set with a relation < such that:

* (Trichotomy) For any elements x and y, exactly one of these statements is true:

* x < y
* y < x
* x = y

* (Transitivity) For any elements x, y, z, if x < y and y < z, then x < z.

* (Well-foundedness) Every nonempty subset has a least element, that is, it has an element x such that there is no other element y in the subset where y < x.

Two well-ordered sets have the same order type, if and only if there is a bijection from one set to the other that converts the relation in the first set, to the relation in the second set.

b) In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The transfinite cardinal numbers, often denoted using the Hebrew symbol

followed by a subscript, describe the sizes of infinite sets.

Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of size. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is greater than the cardinality of the set of natural numbers. It is also possible for a proper subset of an infinite set to have the same cardinality as the original set—something that cannot happen with proper subsets of finite sets.

There is a transfinite sequence of cardinal numbers:

This sequence starts with the natural numbers including zero (finite cardinals), which are followed by the aleph numbers (infinite cardinals of well-ordered sets). The aleph numbers are indexed by ordinal numbers. Under the assumption of the axiom of choice, this transfinite sequence includes every cardinal number. If one rejects that axiom, the situation is more complicated, with additional infinite cardinals that are not alephs.

Cardinality is studied for its own sake as part of set theory. It is also a tool used in branches of mathematics including model theory, combinatorics, abstract algebra and mathematical analysis. In category theory, the cardinal numbers form a skeleton of the category of sets.


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#29 Yesterday 22:01:40

ganesh
Administrator
Registered: 2005-06-28
Posts: 34,872

Re: Some special numbers

40) Nonstandard numbers

Hyperreal numbers are used in non-standard analysis. The hyperreals, or nonstandard reals (usually denoted as *R), denote an ordered field that is a proper extension of the ordered field of real numbers R and satisfies the transfer principle. This principle allows true first-order statements about R to be reinterpreted as true first-order statements about *R.

Superreal and surreal numbers extend the real numbers by adding infinitesimally small numbers and infinitely large numbers, but still form fields.

In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbers greater than anything of the form

(for any finite number of terms).

Such numbers are infinite, and their reciprocals are infinitesimals. The term "hyper-real" was introduced by Edwin Hewitt in 1948.

The hyperreal numbers satisfy the transfer principle, a rigorous version of Leibniz's heuristic law of continuity. The transfer principle states that true first-order statements about R are also valid in *R. For example, the commutative law of addition, x + y = y + x, holds for the hyperreals just as it does for the reals; since R is a real closed field, so is *R. Since

for all integers n, one also has
for all hyperintegers H. The transfer principle for ultrapowers is a consequence of Łoś' theorem of 1955.

Concerns about the soundness of arguments involving infinitesimals date back to ancient Greek mathematics, with Archimedes replacing such proofs with ones using other techniques such as the method of exhaustion. In the 1960s, Abraham Robinson proved that the hyperreals were logically consistent if and only if the reals were. This put to rest the fear that any proof involving infinitesimals might be unsound, provided that they were manipulated according to the logical rules that Robinson delineated.

The application of hyperreal numbers and in particular the transfer principle to problems of analysis is called nonstandard analysis. One immediate application is the definition of the basic concepts of analysis such as the derivative and integral in a direct fashion, without passing via logical complications of multiple quantifiers. Thus, the derivative of f(x) becomes

for an infinitesimal
, where st(·) denotes the standard part function, which "rounds off" each finite hyperreal to the nearest real. Similarly, the integral is defined as the standard part of a suitable infinite sum.


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

Board footer

Powered by FluxBB