You are not logged in.
Pages: 1
Black Hole
Summary
A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape its event horizon. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. Although it has a great effect on the fate and circumstances of an object crossing it, it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.
Objects whose gravitational fields are too strong for light to escape were first considered in the 18th century by John Michell and Pierre-Simon Laplace. In 1916, Karl Schwarzschild found the first modern solution of general relativity that would characterize a black hole. David Finkelstein, in 1958, first published the interpretation of "black hole" as a region of space from which nothing can escape. Black holes were long considered a mathematical curiosity; it was not until the 1960s that theoretical work showed they were a generic prediction of general relativity. The discovery of neutron stars by Jocelyn Bell Burnell in 1967 sparked interest in gravitationally collapsed compact objects as a possible astrophysical reality. The first black hole known was Cygnus X-1, identified by several researchers independently in 1971.
Black holes of stellar mass form when massive stars collapse at the end of their life cycle. After a black hole has formed, it can grow by absorbing mass from its surroundings. Supermassive black holes of millions of solar masses (M☉) may form by absorbing other stars and merging with other black holes. There is consensus that supermassive black holes exist in the centres of most galaxies.
The presence of a black hole can be inferred through its interaction with other matter and with electromagnetic radiation such as visible light. Any matter that falls onto a black hole can form an external accretion disk heated by friction, forming quasars, some of the brightest objects in the universe. Stars passing too close to a supermassive black hole can be shredded into streamers that shine very brightly before being "swallowed." If other stars are orbiting a black hole, their orbits can determine the black hole's mass and location. Such observations can be used to exclude possible alternatives such as neutron stars. In this way, astronomers have identified numerous stellar black hole candidates in binary systems and established that the radio source known as Sagittarius A*, at the core of the Milky Way galaxy, contains a supermassive black hole of about 4.3 million solar masses.
Details
Black holes are points in space that are so dense they create deep gravity sinks. Beyond a certain region, not even light can escape the powerful tug of a black hole's gravity. And anything that ventures too close—be it star, planet, or spacecraft—will be stretched and compressed like putty in a theoretical process aptly known as spaghettification.
There are four types of black holes: stellar, intermediate, supermassive, and miniature. The most commonly known way a black hole forms is by stellar death. As stars reach the ends of their lives, most will inflate, lose mass, and then cool to form white dwarfs. But the largest of these fiery bodies, those at least 10 to 20 times as massive as our own sun, are destined to become either super-dense neutron stars or so-called stellar-mass black holes.
In their final stages, enormous stars go out with a bang in massive explosions known as supernovae. Such a burst flings star matter out into space but leaves behind the stellar core. While the star was alive, nuclear fusion created a constant outward push that balanced the inward pull of gravity from the star's own mass. In the stellar remnants of a supernova, however, there are no longer forces to oppose that gravity, so the star core begins to collapse in on itself.
If its mass collapses into an infinitely small point, a black hole is born. Packing all of that bulk—many times the mass of our own sun—into such a tiny point gives black holes their powerful gravitational pull. Thousands of these stellar-mass black holes may lurk within our own Milky Way galaxy.
One black hole is not like the others
Supermassive black holes, predicted by Einstein's general theory of relativity, can have masses equal to billions of suns; these cosmic monsters likely hide at the centers of most galaxies. The Milky Way hosts its own supermassive black hole at its center known as Sagittarius A* (pronounced “ay star”) that is more than four million times as massive as our sun.
The tiniest members of the black hole family are, so far, theoretical. These small vortices of darkness may have swirled to life soon after the universe formed with the big bang, some 13.7 billion years ago, and then quickly evaporated. Astronomers also suspect that a class of objects called intermediate-mass black holes exist in the universe, although evidence for them is so far debatable.
No matter their starting size, black holes can grow throughout their lives, slurping gas and dust from any objects that creep too close. Anything that passes the event horizon, the point at which escape becomes impossible, is in theory destined for spaghettification thanks to a sharp increase in the strength of gravity as you fall into the black hole.
As astrophysicist Neil Degrasse Tyson once described the process: “While you're getting stretched, you're getting squeezed—extruded through the fabric of space like toothpaste through a tube.”
But black holes aren't exactly “cosmic vacuum cleaners,” as often depicted in popular media. Objects must creep fairly close to one to lose this gravitational tug-of-war. For example, if our sun was suddenly replaced by a black hole of similar mass, our planetary family would continue to orbit unperturbed, if much less warm and illuminated.
Peering through the darkness
Because black holes swallow all light, astronomers can't spot them directly like they do the many glittery cosmic objects in the sky. But there are a few keys that reveal a black hole's presence.
For one, a black hole's intense gravity tugs on any surrounding objects. Astronomers use these erratic movements to infer the presence of the invisible monster that lurks nearby. Or objects can orbit a black hole, and astronomers can look for stars that seem to orbit nothing to detect a likely candidate. That's how astronomers eventually identified Sagittarius A* as a black hole in the early 2000s.
Black holes are also messy eaters, which often betrays their locations. As they sip on surrounding stars, their massive gravitational and magnetic forces superheat the infalling gas and dust, causing it to emit radiation. Some of this glowing matter envelops the black hole in a whirling region called an accretion disk. Even the matter that starts falling into a black hole isn't necessarily there to stay. Black holes can sometimes eject infalling stardust in mighty radiation-laden burps.
Additional Information
A black hole is a cosmic body of extremely intense gravity from which nothing, not even light, can escape. A black hole can be formed by the death of a massive star. When such a star has exhausted the internal thermonuclear fuels in its core at the end of its life, the core becomes unstable and gravitationally collapses inward upon itself, and the star’s outer layers are blown away. The crushing weight of constituent matter falling in from all sides compresses the dying star to a point of zero volume and infinite density called the singularity.
Details of the structure of a black hole are calculated from Albert Einstein’s general theory of relativity. The singularity constitutes the centre of a black hole and is hidden by the object’s “surface,” the event horizon. Inside the event horizon the escape velocity (i.e., the velocity required for matter to escape from the gravitational field of a cosmic object) exceeds the speed of light, so that not even rays of light can escape into space. The radius of the event horizon is called the Schwarzschild radius, after the German astronomer Karl Schwarzschild, who in 1916 predicted the existence of collapsed stellar bodies that emit no radiation. The size of the Schwarzschild radius is proportional to the mass of the collapsing star. For a black hole with a mass 10 times as great as that of the Sun, the radius would be 30 km (18.6 miles).
Only the most massive stars—those of more than three solar masses—become black holes at the end of their lives. Stars with a smaller amount of mass evolve into less compressed bodies, either white dwarfs or neutron stars.
Black holes usually cannot be observed directly on account of both their small size and the fact that they emit no light. They can be “observed,” however, by the effects of their enormous gravitational fields on nearby matter. For example, if a black hole is a member of a binary star system, matter flowing into it from its companion becomes intensely heated and then radiates X-rays copiously before entering the event horizon of the black hole and disappearing forever. One of the component stars of the binary X-ray system Cygnus X-1 is a black hole. Discovered in 1971 in the constellation Cygnus, this binary consists of a blue supergiant and an invisible companion 14.8 times the mass of the Sun that revolve about one another in a period of 5.6 days.
Some black holes apparently have nonstellar origins. Various astronomers have speculated that large volumes of interstellar gas collect and collapse into supermassive black holes at the centres of quasars and galaxies. A mass of gas falling rapidly into a black hole is estimated to give off more than 100 times as much energy as is released by the identical amount of mass through nuclear fusion. Accordingly, the collapse of millions or billions of solar masses of interstellar gas under gravitational force into a large black hole would account for the enormous energy output of quasars and certain galactic systems.
One such supermassive black hole, Sagittarius A*, exists at the centre of the Milky Way Galaxy. Observations of stars orbiting the position of Sagittarius A* demonstrate the presence of a black hole with a mass equivalent to more than 4,000,000 Suns. (For these observations, American astronomer Andrea Ghez and German astronomer Reinhard Genzel were awarded the 2020 Nobel Prize for Physics.) Supermassive black holes have been detected in other galaxies as well. In 2017 the Event Horizon Telescope obtained an image of the supermassive black hole at the centre of the M87 galaxy. That black hole has a mass equal to six and a half billion Suns but is only 38 billion km (24 billion miles) across. It was the first black hole to be imaged directly. The existence of even larger black holes, each with a mass equal to 10 billion Suns, can be inferred from the energetic effects on gas swirling at extremely high velocities around the centre of NGC 3842 and NGC 4889, galaxies near the Milky Way.
The existence of another kind of nonstellar black hole was proposed by the British astrophysicist Stephen Hawking. According to Hawking’s theory, numerous tiny primordial black holes, possibly with a mass equal to or less than that of an asteroid, might have been created during the big bang, a state of extremely high temperatures and density in which the universe originated 13.8 billion years ago. These so-called mini black holes, like the more massive variety, lose mass over time through Hawking radiation and disappear. If certain theories of the universe that require extra dimensions are correct, the Large Hadron Collider could produce significant numbers of mini black holes.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Hi ganesh,
This was a very informative read. Thank you for posting. I have a few questions
1. Is it possible for a black hole to reach full capacity? If so, what happens?
2. I have heard that within a black hole, time and space exchange positions. What does that mean? Can we go only forwards in space but forwards and backwards in time inside a black hole then?
Learning is fun - Exceptio probat regulam!
Offline
Hi,
A black hole is formed when a massive star dies. The core of the star collapses on itself, and its enormous mass is concentrated in an infinitely small space called a singularity. The singularity is so dense that it disturbs the surrounding portion of the universe. The universe can be thought of as a gigantic mesh.
.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Pages: 1