Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 2023-10-21 18:27:09

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 48,384

Vacuum

Vacuum

Gist

A vacuum ( PL : vacuums or vacua) is a space devoid of matter. The word is derived from the Latin adjective vacuus for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure.

Summary

Vacuum, space in which there is no matter or in which the pressure is so low that any particles in the space do not affect any processes being carried on there. It is a condition well below normal atmospheric pressure and is measured in units of pressure (the pascal). A vacuum can be created by removing air from a space using a vacuum pump or by reducing the pressure using a fast flow of fluid, as in Bernoulli’s principle.

Details

A vacuum (pl: vacuums or vacua) is a space devoid of matter. The word is derived from the Latin adjective vacuus for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often discuss ideal test results that would occur in a perfect vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is considerably lower than atmospheric pressure. The Latin term in vacuo is used to describe an object that is surrounded by a vacuum.

The quality of a partial vacuum refers to how closely it approaches a perfect vacuum. Other things equal, lower gas pressure means higher-quality vacuum. For example, a typical vacuum cleaner produces enough suction to reduce air pressure by around 20%. But higher-quality vacuums are possible. Ultra-high vacuum chambers, common in chemistry, physics, and engineering, operate below one trillionth ({10}^{-12}) of atmospheric pressure (100 nPa), and can reach around 100 particles/{cm}^3. Outer space is an even higher-quality vacuum, with the equivalent of just a few hydrogen atoms per cubic meter on average in intergalactic space.

Vacuum has been a frequent topic of philosophical debate since ancient Greek times, but was not studied empirically until the 17th century. Evangelista Torricelli produced the first laboratory vacuum in 1643, and other experimental techniques were developed as a result of his theories of atmospheric pressure. A Torricellian vacuum is created by filling with mercury a tall glass container closed at one end, and then inverting it in a bowl to contain the mercury (see below).

Vacuum became a valuable industrial tool in the 20th century with the introduction of incandescent light bulbs and vacuum tubes, and a wide array of vacuum technologies has since become available. The development of human spaceflight has raised interest in the impact of vacuum on human health, and on life forms in general.

Etymology

The word vacuum comes from Latin 'an empty space, void', noun use of neuter of vacuus, meaning "empty", related to vacare, meaning "to be empty".

Vacuum is one of the few words in the English language that contains two consecutive instances of the vowel u.

Historical understanding

Historically, there has been much dispute over whether such a thing as a vacuum can exist. Ancient Greek philosophers debated the existence of a vacuum, or void, in the context of atomism, which posited void and atom as the fundamental explanatory elements of physics. Following Plato, even the abstract concept of a featureless void faced considerable skepticism: it could not be apprehended by the senses, it could not, itself, provide additional explanatory power beyond the physical volume with which it was commensurate and, by definition, it was quite literally nothing at all, which cannot rightly be said to exist. Aristotle believed that no void could occur naturally, because the denser surrounding material continuum would immediately fill any incipient rarity that might give rise to a void.

In his Physics, book IV, Aristotle offered numerous arguments against the void: for example, that motion through a medium which offered no impediment could continue ad infinitum, there being no reason that something would come to rest anywhere in particular. Lucretius argued for the existence of vacuum in the first century BC and Hero of Alexandria tried unsuccessfully to create an artificial vacuum in the first century AD.

In the medieval Muslim world, the physicist and Islamic scholar Al-Farabi wrote a treatise rejecting the existence of the vacuum in the 10th century. He concluded that air's volume can expand to fill available space, and therefore the concept of a perfect vacuum was incoherent. According to Nader El-Bizri, the physicist Ibn al-Haytham and the Mu'tazili theologians disagreed with Aristotle and Al-Farabi, and they supported the existence of a void. Using geometry, Ibn al-Haytham mathematically demonstrated that place (al-makan) is the imagined three-dimensional void between the inner surfaces of a containing body. According to Ahmad Dallal, Abū Rayhān al-Bīrūnī also states that "there is no observable evidence that rules out the possibility of vacuum". The suction pump was described by Arab engineer Al-Jazari in the 13th century, and later appeared in Europe from the 15th century.

European scholars such as Roger Bacon, Blasius of Parma and Walter Burley in the 13th and 14th century focused considerable attention on issues concerning the concept of a vacuum. Eventually following Stoic physics in this instance, scholars from the 14th century onward increasingly departed from the Aristotelian perspective in favor of a supernatural void beyond the confines of the cosmos itself, a conclusion widely acknowledged by the 17th century, which helped to segregate natural and theological concerns.

Almost two thousand years after Plato, René Descartes also proposed a geometrically based alternative theory of atomism, without the problematic nothing–everything dichotomy of void and atom. Although Descartes agreed with the contemporary position, that a vacuum does not occur in nature, the success of his namesake coordinate system and more implicitly, the spatial–corporeal component of his metaphysics would come to define the philosophically modern notion of empty space as a quantified extension of volume. By the ancient definition however, directional information and magnitude were conceptually distinct.

Medieval thought experiments into the idea of a vacuum considered whether a vacuum was present, if only for an instant, between two flat plates when they were rapidly separated. There was much discussion of whether the air moved in quickly enough as the plates were separated, or, as Walter Burley postulated, whether a 'celestial agent' prevented the vacuum arising. The commonly held view that nature abhorred a vacuum was called horror vacui. There was even speculation that even God could not create a vacuum if he wanted and the 1277 Paris condemnations of Bishop Étienne Tempier, which required there to be no restrictions on the powers of God, led to the conclusion that God could create a vacuum if he so wished. Jean Buridan reported in the 14th century that teams of ten horses could not pull open bellows when the port was sealed.

The 17th century saw the first attempts to quantify measurements of partial vacuum. Evangelista Torricelli's mercury barometer of 1643 and Blaise Pascal's experiments both demonstrated a partial vacuum.

In 1654, Otto von Guericke invented the first vacuum pump and conducted his famous Magdeburg hemispheres experiment, showing that, owing to atmospheric pressure outside the hemispheres, teams of horses could not separate two hemispheres from which the air had been partially evacuated. Robert Boyle improved Guericke's design and with the help of Robert Hooke further developed vacuum pump technology. Thereafter, research into the partial vacuum lapsed until 1850 when August Toepler invented the Toepler pump and in 1855 when Heinrich Geissler invented the mercury displacement pump, achieving a partial vacuum of about 10 Pa (0.1 Torr). A number of electrical properties become observable at this vacuum level, which renewed interest in further research.

While outer space provides the most rarefied example of a naturally occurring partial vacuum, the heavens were originally thought to be seamlessly filled by a rigid indestructible material called aether. Borrowing somewhat from the pneuma of Stoic physics, aether came to be regarded as the rarefied air from which it took its name. Early theories of light posited a ubiquitous terrestrial and celestial medium through which light propagated. Additionally, the concept informed Isaac Newton's explanations of both refraction and of radiant heat. 19th century experiments into this luminiferous aether attempted to detect a minute drag on the Earth's orbit. While the Earth does, in fact, move through a relatively dense medium in comparison to that of interstellar space, the drag is so minuscule that it could not be detected. In 1912, astronomer Henry Pickering commented: "While the interstellar absorbing medium may be simply the ether, [it] is characteristic of a gas, and free gaseous molecules are certainly there".

Later, in 1930, Paul Dirac proposed a model of the vacuum as an infinite sea of particles possessing negative energy, called the Dirac sea. This theory helped refine the predictions of his earlier formulated Dirac equation, and successfully predicted the existence of the positron, confirmed two years later. Werner Heisenberg's uncertainty principle, formulated in 1927, predicted a fundamental limit within which instantaneous position and momentum, or energy and time can be measured. This has far reaching consequences on the "emptiness" of space between particles. In the late 20th century, so-called virtual particles that arise spontaneously from empty space were confirmed.

Outer space

Outer space has very low density and pressure, and is the closest physical approximation of a perfect vacuum. But no vacuum is truly perfect, not even in interstellar space, where there are still a few hydrogen atoms per cubic meter.

Stars, planets, and moons keep their atmospheres by gravitational attraction, and as such, atmospheres have no clearly delineated boundary: the density of atmospheric gas simply decreases with distance from the object. The Earth's atmospheric pressure drops to about 32 millipascals (4.6×{10}^{-6} psi) at 100 kilometres (62 mi) of altitude, the Kármán line, which is a common definition of the boundary with outer space. Beyond this line, isotropic gas pressure rapidly becomes insignificant when compared to radiation pressure from the Sun and the dynamic pressure of the solar winds, so the definition of pressure becomes difficult to interpret. The thermosphere in this range has large gradients of pressure, temperature and composition, and varies greatly due to space weather. Astrophysicists prefer to use number density to describe these environments, in units of particles per cubic centimetre.

But although it meets the definition of outer space, the atmospheric density within the first few hundred kilometers above the Kármán line is still sufficient to produce significant drag on satellites. Most artificial satellites operate in this region called low Earth orbit and must fire their engines every couple of weeks or a few times a year (depending on solar activity). The drag here is low enough that it could theoretically be overcome by radiation pressure on solar sails, a proposed propulsion system for interplanetary travel. Planets are too massive for their trajectories to be significantly affected by these forces, although their atmospheres are eroded by the solar winds.

All of the observable universe is filled with large numbers of photons, the so-called cosmic background radiation, and quite likely a correspondingly large number of neutrinos. The current temperature of this radiation is about 3 K (−270.15 °C; −454.27 °F).

Measurement

The quality of a vacuum is indicated by the amount of matter remaining in the system, so that a high quality vacuum is one with very little matter left in it. Vacuum is primarily measured by its absolute pressure, but a complete characterization requires further parameters, such as temperature and chemical composition. One of the most important parameters is the mean free path (MFP) of residual gases, which indicates the average distance that molecules will travel between collisions with each other. As the gas density decreases, the MFP increases, and when the MFP is longer than the chamber, pump, spacecraft, or other objects present, the continuum assumptions of fluid mechanics do not apply. This vacuum state is called high vacuum, and the study of fluid flows in this regime is called particle gas dynamics. The MFP of air at atmospheric pressure is very short, 70 nm, but at 100 mPa (≈{10}^{-3} Torr) the MFP of room temperature air is roughly 100 mm, which is on the order of everyday objects such as vacuum tubes. The Crookes radiometer turns when the MFP is larger than the size of the vanes.

Uses

Vacuum is useful in a variety of processes and devices. Its first widespread use was in the incandescent light bulb to protect the filament from chemical degradation. The chemical inertness produced by a vacuum is also useful for electron beam welding, cold welding, vacuum packing and vacuum frying. Ultra-high vacuum is used in the study of atomically clean substrates, as only a very good vacuum preserves atomic-scale clean surfaces for a reasonably long time (on the order of minutes to days). High to ultra-high vacuum removes the obstruction of air, allowing particle beams to deposit or remove materials without contamination. This is the principle behind chemical vapor deposition, physical vapor deposition, and dry etching which are essential to the fabrication of semiconductors and optical coatings, and to surface science. The reduction of convection provides the thermal insulation of thermos bottles. Deep vacuum lowers the boiling point of liquids and promotes low temperature outgassing which is used in freeze drying, adhesive preparation, distillation, metallurgy, and process purging. The electrical properties of vacuum make electron microscopes and vacuum tubes possible, including cathode ray tubes. Vacuum interrupters are used in electrical switchgear. Vacuum arc processes are industrially important for production of certain grades of steel or high purity materials. The elimination of air friction is useful for flywheel energy storage and ultracentrifuges.

forbes-swift-clean-vacuum-cleaner-front1.png


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

Board footer

Powered by FluxBB