Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 2024-02-18 17:11:56

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 48,390

Electricity

Electricity

Gist

Electricity is a type of energy that consists of the movement of electrons between two points when there is a potential difference between them, making it possible to generate what is known as an electric current. Let's see a practical example to understand it better. What happens when we turn on the light switch?

Summary

Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.

The presence of either a positive or negative electric charge produces an electric field. The motion of electric charges is an electric current and produces a magnetic field. In most applications, Coulomb's law determines the force acting on an electric charge. Electric potential is the work done to move an electric charge from one point to another within an electric field, typically measured in volts.

Electricity plays a central role in many modern technologies, serving in electric power where electric current is used to energise equipment, and in electronics dealing with electrical circuits involving active components such as vacuum tubes, transistors, diodes and integrated circuits, and associated passive interconnection technologies.

The study of electrical phenomena dates back to antiquity, with theoretical understanding progressing slowly until the 17th and 18th centuries. The development of the theory of electromagnetism in the 19th century marked significant progress, leading to electricity's industrial and residential application by electrical engineers by the century's end. This rapid expansion in electrical technology at the time was the driving force for the Second Industrial Revolution, with electricity's versatility driving transformations in industry and society. Electricity is integral to applications spanning transport, heating, lighting, communications, and computation, making it the foundation of modern industrial society.[

Details

Electricity is a phenomenon associated with stationary or moving electric charges. Electric charge is a fundamental property of matter and is borne by elementary particles. In electricity the particle involved is the electron, which carries a charge designated, by convention, as negative. Thus, the various manifestations of electricity are the result of the accumulation or motion of numbers of electrons.

Electrostatics

Electrostatics is the study of electromagnetic phenomena that occur when there are no moving charges—i.e., after a static equilibrium has been established. Charges reach their equilibrium positions rapidly because the electric force is extremely strong. The mathematical methods of electrostatics make it possible to calculate the distributions of the electric field and of the electric potential from a known configuration of charges, conductors, and insulators. Conversely, given a set of conductors with known potentials, it is possible to calculate electric fields in regions between the conductors and to determine the charge distribution on the surface of the conductors. The electric energy of a set of charges at rest can be viewed from the standpoint of the work required to assemble the charges; alternatively, the energy also can be considered to reside in the electric field produced by this assembly of charges. Finally, energy can be stored in a capacitor; the energy required to charge such a device is stored in it as electrostatic energy of the electric field.

Coulomb’s law

Static electricity is a familiar electric phenomenon in which charged particles are transferred from one body to another. For example, if two objects are rubbed together, especially if the objects are insulators and the surrounding air is dry, the objects acquire equal and opposite charges and an attractive force develops between them. The object that loses electrons becomes positively charged, and the other becomes negatively charged. The force is simply the attraction between charges of opposite sign. The properties of this force were described above; they are incorporated in the mathematical relationship known as Coulomb’s law.

Capacitance

A useful device for storing electrical energy consists of two conductors in close proximity and insulated from each other. A simple example of such a storage device is the parallel-plate capacitor. If positive charges with total charge +Q are deposited on one of the conductors and an equal amount of negative charge −Q is deposited on the second conductor, the capacitor is said to have a charge Q.

Principle of the capacitor

To understand how a charged capacitor stores energy, consider the following charging process. With both plates of the capacitor initially uncharged, a small amount of negative charge is removed from the lower plate and placed on the upper plate. Thus, little work is required to make the lower plate slightly positive and the upper plate slightly negative. As the process is repeated, however, it becomes increasingly difficult to transport the same amount of negative charge, since the charge is being moved toward a plate that is already negatively charged and away from a plate that is positively charged. The negative charge on the upper plate repels the negative charge moving toward it, and the positive charge on the lower plate exerts an attractive force on the negative charge being moved away. Therefore, work has to be done to charge the capacitor.

Where and how is this energy stored? The negative charges on the upper plate are attracted toward the positive charges on the lower plate and could do work if they could leave the plate. Because they cannot leave the plate, however, the energy is stored. A mechanical analogy is the potential energy of a stretched spring. Another way to understand the energy stored in a capacitor is to compare an uncharged capacitor with a charged capacitor. In the uncharged capacitor, there is no electric field between the plates; in the charged capacitor, because of the positive and negative charges on the inside surfaces of the plates, there is an electric field between the plates with the field lines pointing from the positively charged plate to the negatively charged one. The energy stored is the energy that was required to establish the field.

Dielectrics, polarization, and electric dipole moment

The amount of charge stored in a capacitor is the product of the voltage and the capacity. What limits the amount of charge that can be stored on a capacitor? The voltage can be increased, but electric breakdown will occur if the electric field inside the capacitor becomes too large. The capacity can be increased by expanding the electrode areas and by reducing the gap between the electrodes. In general, capacitors that can withstand high voltages have a relatively small capacity. If only low voltages are needed, however, compact capacitors with rather large capacities can be manufactured. One method for increasing capacity is to insert between the conductors an insulating material that reduces the voltage because of its effect on the electric field. Such materials are called dielectrics (substances with no free charges). When the molecules of a dielectric are placed in the electric field, their negatively charged electrons separate slightly from their positively charged cores. With this separation, referred to as polarization, the molecules acquire an electric dipole moment. A cluster of charges with an electric dipole moment is often called an electric dipole.

Is there an electric force between a charged object and uncharged matter, such as a piece of wood? Surprisingly, the answer is yes, and the force is attractive. The reason is that under the influence of the electric field of a charged object, the negatively charged electrons and positively charged nuclei within the atoms and molecules are subjected to forces in opposite directions. As a result, the negative and positive charges separate slightly. Such atoms and molecules are said to be polarized and to have an electric dipole moment. The molecules in the wood acquire an electric dipole moment in the direction of the external electric field. The polarized molecules are attracted toward the charged object because the field increases in the direction of the charged object.

Applications of capacitors

Capacitors have many important applications. They are used, for example, in digital circuits so that information stored in large computer memories is not lost during a momentary electric power failure; the electric energy stored in such capacitors maintains the information during the temporary loss of power. Capacitors play an even more important role as filters to divert spurious electric signals and thereby prevent damage to sensitive components and circuits caused by electric surges. How capacitors provide such protection is discussed below in the section Transient response.

Direct electric current:

Basic phenomena and principles

Many electric phenomena occur under what is termed steady-state conditions. This means that such electric quantities as current, voltage, and charge distributions are not affected by the passage of time. For instance, because the current through a filament inside a car headlight does not change with time, the brightness of the headlight remains constant. An example of a nonsteady-state situation is the flow of charge between two conductors that are connected by a thin conducting wire and that initially have an equal but opposite charge. As current flows from the positively charged conductor to the negatively charged one, the charges on both conductors decrease with time, as does the potential difference between the conductors. The current therefore also decreases with time and eventually ceases when the conductors are discharged.

In an electric circuit under steady-state conditions, the flow of charge does not change with time and the charge distribution stays the same. Since charge flows from one location to another, there must be some mechanism to keep the charge distribution constant. In turn, the values of the electric potentials remain unaltered with time. Any device capable of keeping the potentials of electrodes unchanged as charge flows from one electrode to another is called a source of electromotive force, or simply an emf.

By some external means, an electric field is established inside the wire in a direction along its length. The electrons that are free to move will gain some speed. Since they have a negative charge, they move in the direction opposite that of the electric field. The current i is defined to have a positive value in the direction of flow of positive charges. If the moving charges that constitute the current i in a wire are electrons, the current is a positive number when it is in a direction opposite to the motion of the negatively charged electrons. (If the direction of motion of the electrons were also chosen to be the direction of a current, the current would have a negative value.) The current is the amount of charge crossing a plane transverse to the wire per unit time—i.e., in a period of one second.

The unit of current is the ampere (A); one ampere equals one coulomb per second. A useful quantity related to the flow of charge is current density, the flow of current per unit area. Symbolized by J, it has a magnitude of i/A and is measured in amperes per square metre.

Wires of different materials have different current densities for a given value of the electric field E; for many materials, the current density is directly proportional to the electric field.

Conductors, insulators, and semiconductors

Materials are classified as conductors, insulators, or semiconductors according to their electric conductivity. The classifications can be understood in atomic terms. Electrons in an atom can have only certain well-defined energies, and, depending on their energies, the electrons are said to occupy particular energy levels. In a typical atom with many electrons, the lower energy levels are filled, each with the number of electrons allowed by a quantum mechanical rule known as the Pauli exclusion principle. Depending on the element, the highest energy level to have electrons may or may not be completely full. If two atoms of some element are brought close enough together so that they interact, the two-atom system has two closely spaced levels for each level of the single atom. If 10 atoms interact, the 10-atom system will have a cluster of 10 levels corresponding to each single level of an individual atom. In a solid, the number of atoms and hence the number of levels is extremely large; most of the higher energy levels overlap in a continuous fashion except for certain energies in which there are no levels at all. Energy regions with levels are called energy bands, and regions that have no levels are referred to as band gaps.

The highest energy band occupied by electrons is the valence band. In a conductor, the valence band is partially filled, and since there are numerous empty levels, the electrons are free to move under the influence of an electric field; thus, in a metal the valence band is also the conduction band. In an insulator, electrons completely fill the valence band; and the gap between it and the next band, which is the conduction band, is large. The electrons cannot move under the influence of an electric field unless they are given enough energy to cross the large energy gap to the conduction band. In a semiconductor, the gap to the conduction band is smaller than in an insulator. At room temperature, the valence band is almost completely filled. A few electrons are missing from the valence band because they have acquired enough thermal energy to cross the band gap to the conduction band; as a result, they can move under the influence of an external electric field. The “holes” left behind in the valence band are mobile charge carriers but behave like positive charge carriers.

For many materials, including metals, resistance to the flow of charge tends to increase with temperature. For example, an increase of 5° C (9° F) increases the resistivity of copper by 2 percent. In contrast, the resistivity of insulators and especially of semiconductors such as silicon and germanium decreases rapidly with temperature; the increased thermal energy causes some of the electrons to populate levels in the conduction band where, influenced by an external electric field, they are free to move. The energy difference between the valence levels and the conduction band has a strong influence on the conductivity of these materials, with a smaller gap resulting in higher conduction at lower temperatures.

The values of electric resistivities show an extremely large variation in the capability of different materials to conduct electricity. The principal reason for the large variation is the wide range in the availability and mobility of charge carriers within the materials. The copper wire, for example, has many extremely mobile carriers; each copper atom has approximately one free electron, which is highly mobile because of its small mass. An electrolyte, such as a saltwater solution, is not as good a conductor as copper. The sodium and chlorine ions in the solution provide the charge carriers. The large mass of each sodium and chlorine ion increases as other attracted ions cluster around them. As a result, the sodium and chlorine ions are far more difficult to move than the free electrons in copper. Pure water also is a conductor, although it is a poor one because only a very small fraction of the water molecules are dissociated into ions. The oxygen, nitrogen, and argon gases that make up the atmosphere are somewhat conductive because a few charge carriers form when the gases are ionized by radiation from radioactive elements on Earth as well as from extraterrestrial cosmic rays (i.e., high-speed atomic nuclei and electrons). Electrophoresis is an interesting application based on the mobility of particles suspended in an electrolytic solution. Different particles (proteins, for example) move in the same electric field at different speeds; the difference in speed can be used to separate the contents of the suspension.

A current flowing through a wire heats it. This familiar phenomenon occurs in the heating coils of an electric range or in the hot tungsten filament of an electric light bulb. This ohmic heating is the basis for the fuses used to protect electric circuits and prevent fires; if the current exceeds a certain value, a fuse, which is made of an alloy with a low melting point, melts and interrupts the flow of current.

In certain materials, however, the power dissipation that manifests itself as heat suddenly disappears if the conductor is cooled to a very low temperature. The disappearance of all resistance is a phenomenon known as superconductivity. As mentioned earlier, electrons acquire some average drift velocity v under the influence of an electric field in a wire. Normally the electrons, subjected to a force because of an electric field, accelerate and progressively acquire greater speed. Their velocity is, however, limited in a wire because they lose some of their acquired energy to the wire in collisions with other electrons and in collisions with atoms in the wire. The lost energy is either transferred to other electrons, which later radiate, or the wire becomes excited with tiny mechanical vibrations referred to as phonons. Both processes heat the material. The term phonon emphasizes the relationship of these vibrations to another mechanical vibration—namely, sound. In a superconductor, a complex quantum mechanical effect prevents these small losses of energy to the medium. The effect involves interactions between electrons and also those between electrons and the rest of the material. It can be visualized by considering the coupling of the electrons in pairs with opposite momenta; the motion of the paired electrons is such that no energy is given up to the medium in inelastic collisions or phonon excitations. One can imagine that an electron about to “collide” with and lose energy to the medium could end up instead colliding with its partner so that they exchange momentum without imparting any to the medium.

A superconducting material widely used in the construction of electromagnets is an alloy of niobium and titanium. This material must be cooled to a few degrees above absolute zero temperature, −263.66° C (or 9.5 K), in order to exhibit the superconducting property. Such cooling requires the use of liquefied helium, which is rather costly. During the late 1980s, materials that exhibit superconducting properties at much higher temperatures were discovered. These temperatures are higher than the −196° C of liquid nitrogen, making it possible to use the latter instead of liquid helium. Since liquid nitrogen is plentiful and cheap, such materials may provide great benefits in a wide variety of applications, ranging from electric power transmission to high-speed computing.

Electromotive force

A 12-volt automobile battery can deliver current to a circuit such as that of a car radio for a considerable length of time, during which the potential difference between the terminals of the battery remains close to 12 volts. The battery must have a means of continuously replenishing the excess positive and negative charges that are located on the respective terminals and that are responsible for the 12-volt potential difference between the terminals. The charges must be transported from one terminal to the other in a direction opposite to the electric force on the charges between the terminals. Any device that accomplishes this transport of charge constitutes a source of electromotive force. A car battery, for example, uses chemical reactions to generate electromotive force. The Van de Graaff generator is a mechanical device that produces an electromotive force. Invented by the American physicist Robert J. Van de Graaff in the 1930s, this type of particle accelerator has been widely used to study subatomic particles. Because it is conceptually simpler than a chemical source of electromotive force, the Van de Graaff generator will be discussed first.

An insulating conveyor belt carries positive charge from the base of the Van de Graaff machine to the inside of a large conducting dome. The charge is removed from the belt by the proximity of sharp metal electrodes called charge remover points. The charge then moves rapidly to the outside of the conducting dome. The positively charged dome creates an electric field, which points away from the dome and provides a repelling action on additional positive charges transported on the belt toward the dome. Thus, work is done to keep the conveyor belt turning. If a current is allowed to flow from the dome to ground and if an equal current is provided by the transport of charge on the insulating belt, equilibrium is established and the potential of the dome remains at a constant positive value. In this example, the current from the dome to ground consists of a stream of positive ions inside the accelerating tube, moving in the direction of the electric field. The motion of the charge on the belt is in a direction opposite to the force that the electric field of the dome exerts on the charge. This motion of charge in a direction opposite the electric field is a feature common to all sources of electromotive force.

In the case of a chemically generated electromotive force, chemical reactions release energy. If these reactions take place with chemicals in close proximity to each other (e.g., if they mix), the energy released heats the mixture. To produce a voltaic cell, these reactions must occur in separate locations. A copper wire and a zinc wire poked into a lemon make up a simple voltaic cell. The potential difference between the copper and the zinc wires can be measured easily and is found to be 1.1 volts; the copper wire acts as the positive terminal. Such a “lemon battery” is a rather poor voltaic cell capable of supplying only small amounts of electric power. Another kind of 1.1-volt battery constructed with essentially the same materials can provide much more electricity. In this case, a copper wire is placed in a solution of copper sulfate and a zinc wire in a solution of zinc sulfate; the two solutions are connected electrically by a potassium chloride salt bridge. (A salt bridge is a conductor with ions as charge carriers.) In both kinds of batteries, the energy comes from the difference in the degree of binding between the electrons in copper and those in zinc. Energy is gained when copper ions from the copper sulfate solution are deposited on the copper electrode as neutral copper ions, thus removing free electrons from the copper wire. At the same time, zinc atoms from the zinc wire go into solution as positively charged zinc ions, leaving the zinc wire with excess free electrons. The result is a positively charged copper wire and a negatively charged zinc wire. The two reactions are separated physically, with the salt bridge completing the internal circuit.

Alternating electric currents:

Basic phenomena and principles

Many applications of electricity and magnetism involve voltages that vary in time. Electric power transmitted over large distances from generating plants to users involves voltages that vary sinusoidally in time, at a frequency of 60 hertz (Hz) in the United States and Canada and 50 hertz in Europe. (One hertz equals one cycle per second.) This means that in the United States, for example, the current alternates its direction in the electric conducting wires so that each second it flows 60 times in one direction and 60 times in the opposite direction. Alternating currents (AC) are also used in radio and television transmissions. In an AM (amplitude-modulation) radio broadcast, electromagnetic waves with a frequency of around one million hertz are generated by currents of the same frequency flowing back and forth in the antenna of the station. The information transported by these waves is encoded in the rapid variation of the wave amplitude. When voices and music are broadcast, these variations correspond to the mechanical oscillations of the sound and have frequencies from 50 to 5,000 hertz. In an FM (frequency-modulation) system, which is used by both television and FM radio stations, audio information is contained in the rapid fluctuation of the frequency in a narrow range around the frequency of the carrier wave.

Circuits that can generate such oscillating currents are called oscillators; they include, in addition to transistors, such basic electrical components as resistors, capacitors, and inductors. As was mentioned above, resistors dissipate heat while carrying a current. Capacitors store energy in the form of an electric field in the volume between oppositely charged electrodes. Inductors are essentially coils of conducting wire; they store magnetic energy in the form of a magnetic field generated by the current in the coil. All three components provide some impedance to the flow of alternating currents. In the case of capacitors and inductors, the impedance depends on the frequency of the current. With resistors, impedance is independent of frequency and is simply the resistance. This is easily seen from Ohm’s law,  when it is written as i = V/R. For a given voltage difference V between the ends of a resistor, the current varies inversely with the value of R. The greater the value R, the greater is the impedance to the flow of electric current. Before proceeding to circuits with resistors, capacitors, inductors, and sinusoidally varying electromotive forces, the behaviour of a circuit with a resistor and a capacitor will be discussed to clarify transient behaviour and the impedance properties of the capacitor.

Bioelectric effects

Bioelectricity refers to the generation or action of electric currents or voltages in biological processes. Bioelectric phenomena include fast signaling in nerves and the triggering of physical processes in muscles or glands. There is some similarity among the nerves, muscles, and glands of all organisms, possibly because fairly efficient electrochemical systems evolved early. Scientific studies tend to focus on the following: nerve or muscle tissue; such organs as the heart, brain, eye, ear, stomach, and certain glands; electric organs in some fish; and potentials associated with damaged tissue.

Electric activity in living tissue is a cellular phenomenon, dependent on the cell membrane. The membrane acts like a capacitor, storing energy as electrically charged ions on opposite sides of the membrane. The stored energy is available for rapid utilization and stabilizes the membrane system so that it is not activated by small disturbances.

Cells capable of electric activity show a resting potential in which their interiors are negative by about 0.1 volt or less compared with the outside of the cell. When the cell is activated, the resting potential may reverse suddenly in sign; as a result, the outside of the cell becomes negative and the inside positive. This condition lasts for a short time, after which the cell returns to its original resting state. This sequence, called depolarization and repolarization, is accompanied by a flow of substantial current through the active cell membrane, so that a “dipole-current source” exists for a short period. Small currents flow from this source through the aqueous medium containing the cell and are detectable at considerable distances from it. These currents, originating in active membrane, are functionally significant very close to their site of origin but must be considered incidental at any distance from it. In electric fish, however, adaptations have occurred, and this otherwise incidental electric current is actually utilized. In some species the external current is apparently used for sensing purposes, while in others it is used to stun or kill prey. In both cases, voltages from many cells add up in series, thus assuring that the specialized functions can be performed. Bioelectric potentials detected at some distance from the cells generating them may be as small as the 20 or 30 microvolts associated with certain components of the human electroencephalogram or the millivolt of the human electrocardiogram. On the other hand, electric eels can deliver electric shocks with voltages as large as 1,000 volts.

In addition to the potentials originating in nerve or muscle cells, relatively steady or slowly varying potentials (often designated dc) are known. These dc potentials occur in the following cases: in areas where cells have been damaged and where ionized potassium is leaking (as much as 50 millivolts); when one part of the brain is compared with another part (up to one millivolt); when different areas of the skin are compared (up to 10 millivolts); within pockets in active glands, e.g., follicles in the thyroid (as high as 60 millivolts); and in special structures in the inner ear (about 80 millivolts).

A small electric shock caused by static electricity during cold, dry weather is a familiar experience. While the sudden muscular reaction it engenders is sometimes unpleasant, it is usually harmless. Even though static potentials of several thousand volts are involved, a current exists for only a brief time and the total charge is very small. A steady current of two milliamperes through the body is barely noticeable. Severe electrical shock can occur above 10 milliamperes, however. Lethal current levels range from 100 to 200 milliamperes. Larger currents, which produce burns and unconsciousness, are not fatal if the victim is given prompt medical care. (Above 200 milliamperes, the heart is clamped during the shock and does not undergo ventricular fibrillation.) Prevention clearly includes avoiding contact with live electric wiring; risk of injury increases considerably if the skin is wet, as the electric resistance of wet skin may be hundreds of times smaller than that of dry skin.

Additional Information

Humans have an intimate relationship with electricity, to the point that it's virtually impossible to separate your life from it. Sure, you can flee from the world of crisscrossing power lines and live your life completely off the grid, but even at the loneliest corners of the world, electricity exists. If it's not lighting up the storm clouds overhead or crackling in a static spark at your fingertips, then it's moving through the human nervous system, animating the brain's will in every flourish, breath and unthinking heartbeat.

When the same mysterious force energizes a loved one's touch, a stroke of lightning and a George Foreman Grill, a curious duality ensues: We take electricity for granted one second and gawk at its power the next. More than two and a half centuries have passed since Benjamin Franklin and others proved lightning was a form of electricity, but it's still hard not to flinch when a particularly violent flash lights up the horizon. On the other hand, no one ever waxes poetic over a cell phone charger.

Electricity powers our world and our bodies. Harnessing its energy is both the domain of imagined sorcery and humdrum, everyday life -- from Emperor Palpatine toasting Luke Skywalker, to the simple act of ejecting the "Star Wars" disc from your PC. Despite our familiarity with its effects, many people fail to understand exactly what electricity is -- a ubiquitous form of energy resulting from the motion of charged particles, like electrons. When put to the question, even acclaimed inventor Thomas Edison merely defined it as "a mode of motion" and "a system of vibrations."

electricity.jpg?anchor=center&mode=crop&width=1920&rnd=133293326643000000&mode=max&upscale=false


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

Board footer

Powered by FluxBB