You are not logged in.
2251) Asphalt
Gist
Asphalt concrete (commonly called asphalt, blacktop, or pavement in North America, and tarmac or bitumen macadam in the United Kingdom and the Republic of Ireland) is a composite material commonly used to surface roads, parking lots, airports, and the core of embankment dams.
Asphalt is known as a mixture of bitumen (as binding material) and a significant amount of inert minerals such as sand, gravel, and crushed stone. It has a blackish-brown colour and is available as a solid at low temperatures and as a liquid at temperatures above 50°C.
Summary
asphalt, black or brown petroleum-like material that has a consistency varying from viscous liquid to glassy solid. It is obtained either as a residue from the distillation of petroleum or from natural deposits. Asphalt consists of compounds of hydrogen and carbon with minor proportions of nitrogen, sulfur, and oxygen. Natural asphalt (also called brea), which is believed to be formed during an early stage in the breakdown of organic marine deposits into petroleum, characteristically contains minerals, while residual petroleum asphalt does not.
The use of asphalt is very old, dating back to its use as a water stop between brick walls of a reservoir at Mohenjo-Daro (about the 3rd millennium bc) in Pakistan. In the Middle East it was extensively used for paving roads and sealing waterworks, important applications even today. The Pitch Lake on the island of Trinidad was the first large commercial source, but natural sources have since declined in importance as petroleum became the major source. Gilsonite, wurzilite, and similar vein asphalts have special uses in heat-resistant enamels; they are hard and are mined like coal. Petroleum asphalt is produced in all consistencies from light road oils to heavy, high-viscosity industrial types.
Asphalt softens when heated and is elastic under certain conditions. The mechanical properties of asphalt are of little significance except when it is used as a binder or adhesive. The principal application of asphalt is in road surfacing, which may be done in a variety of ways. Light oil “dust layer” treatments may be built up by repetition to form a hard surface, or a granular aggregate may be added to an asphalt coat, or earth materials from the road surface itself may be mixed with the asphalt.
Other important applications include canal and reservoir linings, dam facings, and other harbour and sea works; asphalt so used may be a thin, sprayed membrane, covered with earth for protection against weathering and mechanical damage, or thicker surfaces, often including riprap (crushed rock). Asphalt is also used for roofs, coatings, floor tilings, soundproofing, waterproofing, and other building-construction elements and in a number of industrial products, such as batteries. For certain applications an asphaltic emulsion is prepared, in which fine globules of asphalt are suspended in water.
Details
Asphalt is a mixture of aggregates, binder and filler, used for constructing and maintaining roads, parking areas, railway tracks, ports, airport runways, bicycle lanes, sidewalks and also play- and sport areas.
Aggregates used for asphalt mixtures could be crushed rock, sand, gravel or slags. Nowadays, certain waste and by-products, such as construction and demolition debris, are being used as aggregates, which increases the sustainability of asphalt.
In order to bind the aggregates into a cohesive mixture a binder is used. Most commonly, bitumen is used as a binder, although nowadays, a series of bio-based binders are also under development with the aim of minimising the environmental impact of the roads.
An average asphalt pavement consists of the road structure above the formation level which includes unbound and bituminous-bound materials. This gives the pavement the ability to distribute the loads of the traffic before it arrives at the formation level.
How is asphalt produced?
Asphalt is produced in an asphalt plant. This can be a fixed plant or even in a mobile mixing plant. It is possible to produce in an asphalt plant up to 800 tons per hour. The average production temperature of hot mix asphalt is between 150 and 180°C, but nowadays new techniques are available to produce asphalt at lower temperatures.
Different kinds of asphalt
To be able to provide the best performance to different applications, a large variety of asphalt mixes can be used. Due to the different requirements (amount of traffic, amount of heavy vehicles, temperature, weather conditions, noise reduction requirements, etc.) the respective mix used needs to have an sufficient stiffness and resistance to deformation in order to cope with the applied pressure from vehicle wheels on the one hand, yet on the other hand, they need to have an adequate flexural strength to resist cracking caused by the varying pressures exerted on them. Moreover, good workability during application is essential in order to ensure that they can be fully compacted to achieve optimum durability.
Asphalt mixtures can be produced at different temperatures:
Hot Mix Asphalt (HMA)
Hot asphalt mixes are generally produced at a temperature between 150 and 180 °C. Depending on the usage, a different asphalt mixture can be used. For more details of the different asphalt mixtures, go to “Asphalt products”
Warm Mix Asphalt (WMA)
A typical WMA is produced at a temperature around 20 – 40 °C lower than an equivalent Hot Mix Asphalt. Significantly less energy is involved and, consequently, less fumes are produced (as rule of thumb, a reduction of 25ºC produces a reduction of 75% of fumes emission). In addition, during the paving operations, the temperature of the material is lower, resulting in improved working conditions for the crew and an earlier opening of the road.
Cold Mix Asphalt
Cold mixes are produced without heating the aggregate. This is only possible, due to the use of bitumen emulsified in water, which breaks either during compaction or during mixing. Producing the coating of the aggregate. Over the curing time, water evaporates and strength increases. Cold mixes are particularly recommendable for lightly trafficked roads.
Different asphalt layers
An asphalt pavement consists of different asphalt layers.
In general the asphalt layers are paved on a bound or unbound road base layer. Starting at the road surface, the first layer is called the surface course. The second layer is mostly called the binder course. The lower layers are the base courses.
Surface course
The surface course constitutes the top layer of the pavement and should be able to withstand high traffic- and environmentally-induced stresses without exhibiting unsatisfactory cracking and rutting. Its main mission is to provide an even profile for the comfort of the user, while providing enough texture to ensure minimum and safe skid resistance. Depending on local conditions, functional characteristics such as skid resistance, noise reduction and durability are often required for wearing courses. In some cases, rapid drainage of surface water is desired while in other cases, the wearing course should be impermeable in order to keep water out of the pavement structure. A wide range of surface layer products can be used depending on specific requirements.
Binder course
Binder courses are designed to withstand the highest shear stresses that occur about 50 – 70 mm below the asphalt surface. The binder course is therefore placed between the surface course and base course to reduce rutting by combining qualities of stability and durability. Stability can be achieved by sufficient stone-on-stone contact and stiff and/or modified binders.
Base course
The base course is perhaps the most important structural layer of the pavement, which is intended to effectively distribute traffic and environmental loading in such a way that underlying unbound layers are not exposed to excessive stresses and strains. This often implies comparatively high stiffness of the base course. Next to this the base course should also show adequate fatigue resistance.
Unbound materials and foundation
Since the formation and sub-soil often constitute relatively weak materials, it is of utmost importance that the damaging loadings are effectively eliminated by the layers above. In this case, unbound road-base or sub-base layers consisting of uncrushed or crushed aggregate can be suitable.
Additional Information
Asphalt is a dark brown to black, highly viscous, hydrocarbon produced from petroleum distillation residue. This distillation can occur naturally, resulting in asphalt lakes, or occur in a petroleum refinery using crude oil. In 2020, the U.S. produced about 21 million tons of asphalt (US EIA). Roads and highways constitute the largest single use of asphalt at about 80 percent of the total (Fredonia Group). In HMA, asphalt functions as a waterproof, thermoplastic, viscoelastic adhesive. By weight, asphalt generally accounts for between 4 and 8 percent of HMA and makes up about 25 – 30 percent of the cost of an HMA pavement structure depending upon the type and quantity. The paving industry also uses asphalt emulsions, asphalt cutbacks and foamed asphalt.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
2252) Millenium
Gist
A millennium is a period of one thousand years, especially one which begins and ends with a year ending in `000,' for example the period from the year 1000 to the year 2000. [formal]
Since in Latin mille means "thousand", a millennium lasts 1,000 years.
A millennium ( pl. millennia or millenniums) is a period of one thousand years or one hundred decades or ten centuries, sometimes called a kiloannum (ka), or kiloyear (ky).
Summary
A millennium is a period of 1,000 years. The Gregorian calendar, put forth in 1582 and subsequently adopted by most countries, did not include a year 0 in the transition from bc (years before Christ) to ad (those since his birth). Thus, the 1st millennium is defined as spanning years 1–1000 and the 2nd the years 1001–2000.
A millennium is a period of 1,000 years. The Gregorian calendar, put forth in 1582 and subsequently adopted by most countries, did not include a year 0 in the transition from bc (years before Christ) to ad (those since his birth). Thus, the 1st millennium is defined as spanning years 1–1000 and the 2nd the years 1001–2000. Although numerous popular celebrations marked the start of the year 2000, the 21st century and 3rd millennium ad began on January 1, 2001.
Details
A millennium (pl. millennia or millenniums) is a period of one thousand years or one hundred decades or ten centuries, sometimes called a kiloannum (ka), or kiloyear (ky). Normally, the word is used specifically for periods of a thousand years that begin at the starting point (initial reference point) of the calendar in consideration and at later years that are whole number multiples of a thousand years after the start point.[clarification needed] The term can also refer to an interval of time beginning on any date. Millennia sometimes have religious or theological implications.
The word millennium derives from the Latin mille, thousand, and annus, year.
There was a public debate leading up to the celebrations of the year 2000 as to whether the beginning of that year should be understood as the beginning of the "new" millennium. Historically, there has been debate around the turn of previous decades, centuries, and millennia, but not so much for decades. The issue arises from the difference between the convention of using ordinal numbers to count years and millennia, as in "the third millennium", or using a vernacular description, as in "the two thousands". The difference of opinion comes down to whether to celebrate, respectively, the end or the beginning of the "-000" year. The first convention is common in English-speaking countries, but the latter is favoured in, for example, Sweden (tvåtusentalet, which translates literally as the two thousands period).
Those holding that the arrival of the new millennium should be celebrated in the transition from 2000 to 2001 (i.e., December 31, 2000, to January 1, 2001) argued that the Anno Domini system of counting years began with the year 1 (there was no year 0) and therefore the first millennium was from the year 1 to the end of the year 1000, the second millennium from 1001 to the end of 2000, and the third millennium beginning with 2001 and ending at the end of 3000. Similarly, the first millennium BC was from the year 1000 BC to the end of the year 1 BC.
Popular culture supported celebrating the arrival of the new millennium in the transition from 1999 to 2000 (i.e., December 31, 1999, to January 1, 2000), in that the change of the hundreds digit in the year number, with the zeroes rolling over, is consistent with the vernacular demarcation of decades by their 'tens' digit (e.g. naming the period 1980 to 1989 as "the 1980s" or "the eighties"). This has been described as "the odometer effect". Also, the "year 2000" had been a popular phrase referring to an often utopian future, or a year when stories in such a future were set. There was also media and public interest in the Y2K computer bug.
A third position was expressed by Bill Paupe, honorary consul for Kiribati: "To me, I just don't see what all the hoopla is about ... it's not going to change anything. The next day the sun is going to come up again and then it will all be forgotten." Even for those who did celebrate, in astronomical terms, there was nothing special about this particular event.
Stephen Jay Gould, in his essay "Dousing Diminutive Dennis' Debate (or DDDD = 2000)", discussed the "high" versus "pop" culture interpretation of the transition. Gould noted that the high culture, strict construction had been the dominant viewpoint at the 20th century's beginning, but that the pop culture viewpoint dominated at its end.
The start of the 21st century and 3rd millennium was celebrated worldwide at the start of the year 2000. One year later, at the start of the year 2001, the celebrations had largely returned to the usual ringing in of just another new year, although some welcomed "the real millennium", including America's official timekeeper, the U.S. Naval Observatory, and the countries of Cuba and Japan.
The popular approach was to treat the end of 1999 as the end of "a millennium" and to hold millennium celebrations at midnight between December 31, 1999, and January 1, 2000, with the cultural and psychological significance of the events listed above combining to cause celebrations to be observed one year earlier than the formal date.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
2253) Liquid Paraffin
Gist
Liquid paraffin is primarily used as a pediatric laxative in medicine and is a popular treatment for constipation and encopresis. Because of its ease of titration, the drug is convenient to synthesize.
Liquid Parafin belongs to the group of medicines called 'laxatives' used to treat constipation in conditions like piles, fistula, fissures, pre/post-operative conditions, elderly and bed-ridden patients. Constipation refers to infrequent bowel movements in which the stools are often dry, painful, and hard to pass.
Summary
Liquid paraffin is a mixture of liquid hydrocarbons. Its main use has been as a lubricant laxative but it is not recommended, because of its adverse effects. Nevertheless, it continues to be used for this purpose and is reportedly as effective as lactulose . However, the erstwhile Committee on Safety of Medicines in the UK recommended the following precautions :
• pack sizes to be limited to 160 ml;
• liquid paraffin to be used only for the symptomatic relief of constipation;
• prolonged use to be avoided and the package label to state “repeated use is not recommended”;
• to be contraindicated in children under 3 years of age.
Liquid paraffin has also been used in ointments, as an emollient in skin diseases, and as a lubricant in treating dry eyes. Injection of liquid paraffin into the pleural cavity (oleothorax) was a widely used treatment for pulmonary tuberculosis before effective antituberculosis drugs became available. Long-term complications continue to be reported.
Details
Liquid paraffin, also known as paraffinum liquidum, paraffin oil, liquid paraffin oil or Russian mineral oil, is a very highly refined mineral oil used in cosmetics and medicine. Cosmetic or medicinal liquid paraffin should not be confused with the paraffin (i.e. kerosene) used as a fuel. The generic sense of paraffin meaning alkane led to regional differences for the meanings of both paraffin and paraffin oil. It is a transparent, colorless, nearly odorless, and oily liquid that is composed of saturated hydrocarbons derived from petroleum.
The term paraffinum perliquidum is sometimes used to denote light liquid paraffin, while the term paraffinum subliquidum is sometimes used to denote a thicker mineral oil.
History
Petroleum is said to have been used as a medicine since 400 BC, and has been mentioned in the texts of classical writers Herodotus, Plutarch, Dioscorides, Pliny, and others. It was used extensively by early Arabians and was important in early Indian medicine. Its first use internally is attributed to Robert A. Chesebrough, who patented it in 1872 for the manufacture of a "new and useful product from petroleum." After Sir W. Arbuthnot Lane, who was then Chief Surgeon of Guy's Hospital, recommended it as a treatment for intestinal stasis and chronic constipation in 1913, liquid paraffin gained more popularity.
Usage in medicine
Liquid paraffin is primarily used as a pediatric laxative in medicine and is a popular treatment for constipation and encopresis. Because of its ease of titration, the drug is convenient to synthesize. It acts primarily as a stool lubricant, and is thus not associated with abdominal cramps, diarrhea, flatulence, disturbances in electrolytes, or tolerance over long periods of usage, side effects that osmotic and stimulant laxatives often engender (however, some literature suggests that these may still occur). The drug acts by softening the feces and coats the intestine with an oily film. Because of this it reduces the pain caused by certain conditions such as piles (haemorrhoids). These traits make the drug ideal for chronic childhood constipation and encopresis, when large doses or long-term usage is necessary.
Consensus has not been entirely reached on the safety of the drug for children. While the drug is widely accepted for the management of childhood constipation in North America and Australia, the drug is used much less in the United Kingdom. The drug is endorsed by the American Academy of Pediatrics and the North American Society for Gastroenterology and Nutrition, with the latter organization outlining it as a first choice for the management of pediatric constipation. The drug is suggested to never be used in cases in which the patient is neurologically impaired or has a potential swallowing dysfunction due to potential respiration complications. Lipoid pneumonia due to mineral oil aspiration is thus a recognized severe complication of this medication, and there is a need for a heightened awareness among caregivers about the potential dangers of inappropriate mineral oil use. Some go as far as saying that it should never be used with children due to this risk.
Liquid paraffin is also used in combination with magnesium as an osmotic laxative, sold under the trade name Mil-Par (among others).
Additionally, it may be used as a release agent, binder, or lubricant on capsules and tablets.
Usage in cosmetics
Liquid paraffin is a hydrating and cleansing agent. Hence, it is used in several cosmetics both for skin and hair products. It is also used as one of the ingredients of after wax wipes.
Health
Upon being taken orally, liquid paraffin might interfere with the absorption of fat-soluble vitamins, though evidence does not seem to fully support this. It can be absorbed into the intestinal wall and may cause foreign-body granulomatous reactions in some rat species. These reactions might not occur in humans, however. Some evidence suggests that it engenders a lack of carcinogenicity. If liquid paraffin enters the lungs, it can cause lipoid pneumonia.
If injected, it can cause granulomatous reactions.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
2254) Anthracite
Gist
The principal use of anthracite today is for a domestic fuel in either hand-fired stoves or automatic stoker furnaces. It delivers high energy per its weight and burns cleanly with little soot, making it ideal for this purpose. Its high value makes it prohibitively expensive for power plant use.
Summary
Anthracite is the most highly metamorphosed form of coal. It contains more fixed carbon (86 percent or greater on a dry, ash-free basis) than any other form of coal and the least amount of volatile matter (14 percent or less on a dry, ash-free basis), and it has calorific values near 35 megajoules per kilogram (approximately 15,000 British thermal units per pound), not much different from the calorific values for most bituminous coal. Anthracite is the least plentiful form of coal. In the United States it is found mostly in northeastern Pennsylvania and makes up less than 2 percent of all coal reserves in the country. Smaller amounts of anthracite occur in South Africa, Australia, eastern Ukraine, western Canada, China, and other countries.
Anthracites are black to steel gray and have a brilliant, almost metallic lustre. They can be polished and used for decorative purposes. Hard and brittle, anthracites break with conchoidal fracture into sharp fragments. Unlike many bituminous coals, they are clean to the touch. Although anthracites are difficult to ignite, they burn with a pale blue flame and require little attention to sustain combustion. In the past they were used for domestic heating because they produce little dust upon handling, burn slowly, and emit relatively little smoke. Anthracite is rarely used for this purpose today because of its limited abundance and relatively high cost and the ready availability of other sources of energy (e.g., natural gas and electricity) for heating purposes.
Although anthracites usually occur in geologically deformed areas, such as in the intensely folded sedimentary rocks of the anthracite region of Pennsylvania, their origin is due to higher than normal heating caused by the presence of nearby igneous intrusions or high geothermal gradients. Both of these phenomena produce temperatures much higher than those reached at depth in most sedimentary basins. For instance, in Antarctica, large igneous sills intruded the coal measures and converted some of the existing bituminous coal to anthracite. Temperatures ranging from 170 to 250 °C (about 340 to 480 °F) are thought to be necessary for the formation of anthracite.
Details
Anthracite, also known as hard coal and black coal, is a hard, compact variety of coal that has a submetallic lustre. It has the highest carbon content, the fewest impurities, and the highest energy density of all types of coal and is the highest ranking of coals.
The Coal Region of Northeastern Pennsylvania in the United States has the largest known deposits of anthracite coal in the world with an estimated reserve of seven billion short tons. China accounts for the majority of global production; other producers include Russia, Ukraine, North Korea, South Africa, Vietnam, Australia, Canada, and the United States. Total production in 2020 was 615 million tons.
Anthracite is the most metamorphosed type of coal, but still represents low-grade metamorphism, in which the carbon content is between 86% and 97%. The term is applied to those varieties of coal which do not give off tarry or other hydrocarbon vapours when heated below their point of ignition. Anthracite is difficult to ignite, and burns with a short, blue, and smokeless flame.
Anthracite is categorized into several grades. Standard grade is used predominantly in power generation, and high grade (HG) and ultra high grade (UHG), are used predominantly in the metallurgy sector. Anthracite accounts for about 1% of global coal reserves, and is mined in only a few countries around the world.
Names
Anthracite derives from the Greek anthrakítēs, literally "coal-like". Other terms which refer to anthracite are black coal, hard coal, stone coal, dark coal, coffee coal, blind coal (in Scotland), Kilkenny coal (in Ireland), crow coal or craw coal, and black diamond. "Blue Coal" is the term for a once-popular and trademarked brand of anthracite, mined by the Glen Alden Coal Company in Pennsylvania, and sprayed with a blue dye at the mine before shipping to its Northeastern U.S. markets to distinguish it from its competitors.
Culm has different meanings in British and American English. In British English, culm is the imperfect anthracite, located predominantly north Devon and Cornwall, which was used as a pigment. The term is also used to refer to some carboniferous rock strata found in both Britain and in the Rhenish hill countries, also known as the Culm Measures. In Britain, it may also refer to coal exported from Britain during the 19th century. In American English, "culm" refers to the waste or slack from anthracite mining, mostly dust and small pieces not suitable for use in home furnaces.
Properties
Anthracite is similar in appearance to the mineraloid jet and is sometimes used as a jet imitation.
Anthracite differs from ordinary bituminous coal by its greater hardness (2.75–3 on the Mohs scale), its higher relative density of 1.3–1.4, and luster, which is often semi-metallic with a mildly green reflection. It contains a high percentage of fixed carbon and a low percentage of volatile matter. It is also free from included soft or fibrous notches and does not soil the fingers when rubbed. Anthracitization is the transformation of bituminous coal into anthracite.
The moisture content of fresh-mined anthracite generally is less than 15 percent. The heat content of anthracite ranges from 26 to 33 MJ/kg (22 to 28 million Btu/short ton) on a moist, mineral-matter-free basis. The heat content of anthracite coal consumed in the United States averages 29 MJ/kg (25 million Btu/ton), on the as-received basis, containing both inherent moisture and mineral matter.
Since the 1980s, anthracite refuse or mine waste has been used for coal power generation in a form of recycling. The practice known as reclamation is being applied to culm piles antedating laws requiring mine owners to restore lands to their approximate original condition.
Chemically, anthracite may be considered as a transition stage between ordinary bituminous coal and graphite, produced by the more or less complete elimination of the volatile constituents of the former, and it is found most abundantly in areas that have been subjected to considerable stresses and pressures, such as the flanks of great mountain ranges. Anthracite is associated with strongly deformed sedimentary rocks that were subjected to higher pressures and temperatures (but short of metamorphic conditions) just as bituminous coal is generally associated with less deformed or flat-lying sedimentary rocks. The compressed layers of anthracite that are deep mined in the folded Ridge and Valley Province of the Appalachian Mountains of the Coal Region of East-central Pennsylvania are extensions of the same layers of bituminous coal that are mined on the generally flat lying and undeformed sedimentary rocks further west on the Allegheny Plateau of Kentucky and West Virginia, Eastern Ohio, and Western Pennsylvania.
In the same way the anthracite region of South Wales is confined to the contorted portion west of Swansea and Llanelli, the central and eastern portions producing steam coal, coking coal and domestic house coals.
Anthracite shows some alteration by the development of secondary divisional planes and fissures so that the original stratification lines are not always easily seen. The thermal conductivity is also higher; a lump of anthracite feels perceptibly colder when held in the warm hand than a similar lump of bituminous coal at the same temperature.
Anthracite has a history of use in blast furnaces for iron smelting; however, it lacked the pore space of metallurgical coke, which eventually replaced anthracite.
Additional Information
Hard and very brittle, anthracite is dense, shiny black, and homogeneous with no marks of layers. Unlike the lower rank coals, it has a high percentage of fixed carbon and a low percentage of volatile matter. Anthracites include a variety of slow-burning fuels merging into graphite at one end and bituminous coal at the other. They are the hardest coals on the market, consisting almost entirely of fixed carbon, with the little volatile matter present in them chiefly as methane, CH4. Anthracite is usually graded into small sizes before being burned on stokers: the ‘meta-anthracites’ burn so slowly as to require mixing with other coals, while the ‘semi-anthracites’, which have more volatile matter, are burned with relative ease if proper fired. Most anthracites have a lower heating value than the highest-grade bituminous coals. Anthracite is used principally for heating homes and in gas production.
Some semi-anthracites are dense, but softer than anthracite. This grade is shiny gray and somewhat granular in structure. The grains have a tendency to break off in handling and produce coarse, sand-like slack.
Other semi-anthracites are dark gray and distinctly granular. The grains break off easily in handling and produce a coarse slack. The granular structure has been produced by small vertical cracks in horizontal layers of comparatively pure coal separated by very thin partings. The cracks are the result of heavy downward pressure and shrinkage of the pure coal because of a drop in temperature.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
2255) Analgesic
Gist
Analgesics are medications used in the management and treatment of pain. They include several classes of medications (acetaminophen, nonsteroidal anti-inflammatory drugs, antidepressants, antiepileptics, local anesthetics, and opioids).
Analgesics are medications that relieve pain. They work either by reducing inflammation or by changing the way the brain processes and perceives pain. Side effects include heartburn, nausea, and headaches.
Some types of analgesics are available over the counter. However, stronger variants are available only with a prescription. This is because strong analgesics are more likely to cause side effects such as dependence, addiction, and withdrawal symptoms.
Summary
Analgesics are drugs that eliminate or alleviate the feeling of pain that accompanies many pathologic conditions. It is difficult to list all the situations in which it is necessary to use analgesics, for example, muscle aches and headaches, and where there is no possibility of becoming addicted. Analgesics are divided into two groups such as opioids, which predominantly influence the central nervous system (CNS), and Nonopioids, which act predominantly on the peripheral nervous system. Opioids are further subdivided into three large subgroups according to their action on opioids receptors such as agonists, mixed agonists/antagonists, and antagonists. Opioid agonists act first and foremost on μ-receptors. Reaction of agonists with opioid μ-receptors leads to an increase in the flow of potassium ions from the cell, simultaneously making it difficult for calcium ions to flow into the cell, which makes neurons less excitable. Opioid antagonists on the other hand also bind to opioid receptors but do not activate them. These compounds are not used for analgesia. Their therapeutic value is in relieving side effects that result from either absolute of relative overdoses or intolerance of drugs by patients, and also in treating cases of Opioid dependency. Drugs of mixed agonists/antagonists group display both agonistic and antagonistic activities. This group of compounds is used for analgesia in cases of moderate-to-severe pain. The chapter lists down widely used agnostic, antagonistic, and mixed agnostic/antagonistic drugs such as Morphine, Codeine, Heroin, Hydromorphone, Oxymorphone, Nalorphine, Pentazocine, Nalbuphine, Naloxone, and Naltrexone, highlighting their chemical structure, specific uses and synthesis. The chapter end with a discussion on non-steroid anti-inflammatory drugs and anti-fever analgesics, such as Salicylic acid derivatives, Pyrazolonees and p-Aminophenol derivatives.
Details
Analgesics are medications that relieve pain. They work either by reducing inflammation or by changing the way the brain processes and perceives pain. Side effects include heartburn, nausea, and headaches.
Some types of analgesics are available over the counter. However, stronger variants are available only with a prescription. This is because strong analgesics are more likely to cause side effects such as dependence, addiction, and withdrawal symptoms.
An analgesic drug, also called simply an analgesic, antalgic, pain reliever, or painkiller, is any member of the group of drugs used for pain management. Analgesics are conceptually distinct from anesthetics, which temporarily reduce, and in some instances eliminate, sensation, although analgesia and anesthesia are neurophysiologically overlapping and thus various drugs have both analgesic and anesthetic effects.
Analgesic choice is also determined by the type of pain: For neuropathic pain, recent research has suggested that classes of drugs that are not normally considered analgesics, such as tricyclic antidepressants and anticonvulsants may be considered as an alternative.
Various analgesics, such as many NSAIDs, are available over the counter in most countries, whereas various others are prescription drugs owing to the substantial risks and high chances of overdose, misuse, and addiction in the absence of medical supervision.
Classification
Analgesics are typically classified based on their mechanism of action.
Paracetamol (acetaminophen)
Paracetamol, also known as acetaminophen or APAP, is a medication used to treat pain and fever. It is typically used for mild to moderate pain. In combination with opioid pain medication, paracetamol is now used for more severe pain such as cancer pain and after surgery. It is typically used either by mouth or rectally but is also available intravenously. Effects last between two and four hours. Paracetamol is classified as a mild analgesic. Paracetamol is generally safe at recommended doses.
NSAIDs
Nonsteroidal anti-inflammatory drug
Nonsteroidal anti-inflammatory drugs (usually abbreviated to NSAIDs), are a drug class that groups together drugs that decrease pain and lower fever, and, in higher doses, decrease inflammation. The most prominent members of this group of drugs, aspirin, ibuprofen and naproxen, Diclofenac are all available over the counter in most countries.
COX-2 inhibitors
These drugs have been derived from NSAIDs. The cyclooxygenase enzyme inhibited by NSAIDs was discovered to have at least two different versions: COX1 and COX2. Research suggested most of the adverse effects of NSAIDs to be mediated by blocking the COX1 (constitutive) enzyme, with the analgesic effects being mediated by the COX2 (inducible) enzyme. Thus, the COX2 inhibitors were developed to inhibit only the COX2 enzyme (traditional NSAIDs block both versions in general). These drugs (such as rofecoxib, celecoxib, and etoricoxib) are equally effective analgesics when compared with NSAIDs, but cause less gastrointestinal hemorrhage in particular.
After widespread adoption of the COX-2 inhibitors, it was discovered that most of the drugs in this class increase the risk of cardiovascular events by 40% on average. This led to the withdrawal of rofecoxib and valdecoxib, and warnings on others. Etoricoxib seems relatively safe, with the risk of thrombotic events similar to that of non-coxib NSAID diclofenac.
Additional Information
An analgesic, any drug that relieves pain selectively without blocking the conduction of nerve impulses, markedly altering sensory perception, or affecting consciousness. This selectivity is an important distinction between an analgesic and an anesthetic.
Analgesics may be classified into two types: anti-inflammatory drugs, which alleviate pain by reducing local inflammatory responses; and the opioids, which act on the brain. The opioid analgesics were once called narcotic drugs because they can induce sleep. The opioid analgesics can be used for either short-term or long-term relief of severe pain. In contrast, the anti-inflammatory compounds are used for short-term pain relief and for modest pain, such as that of headache, muscle strain, bruising, or arthritis.
Anti-inflammatory analgesics
Most anti-inflammatory analgesics are derived from three compounds discovered in the 19th century—salicylic acid, pyrazolone, and phenacetin (or acetophenetidin). Although chemically unrelated, the drugs in these families have the ability to relieve mild to moderate pain through actions that reduce inflammation at its source. Acetylsalicylic acid, or aspirin, which is derived from salicylic acid, is the most widely used mild analgesic. It is considered the prototype for anti-inflammatory analgesics, the two other major types of which include acetaminophen (a derivative of phenacetin) and the aspirin-like drugs, or nonsteroidal anti-inflammatory drugs (NSAIDs), which include compounds such as ibuprofen, naproxen, and fenoprofen. Pyrazolone derivatives, with some exceptions, are no longer widely used in many countries, because of their tendency to cause an acute infection known as agranulocytosis.
Aspirin and NSAIDs appear to share a similar molecular mechanism of action—namely, inhibition of the synthesis of prostaglandins (natural products of inflamed white blood cells) that induce the responses in local tissue that include pain and inflammation. In fact, aspirin and all aspirin-like analgesics, including indomethacin and sulindac, which are derived from a heterocyclic organic compound known as indole, inhibit prostaglandin synthesis and release. All these agents can be further divided into nonselective COX inhibitors and selective COX inhibitors. COX, or cyclooxygenase, is an enzyme responsible for the synthesis of prostaglandins and related compounds. It has two forms, COX-1, which is found in most normal tissues, and COX-2, which is induced in the presence of inflammation. Because COX-2 is not normally expressed in the stomach, the use of COX-2 inhibitors (e.g., rofecoxib, celecoxib) seems to result in less gastric ulceration than occurs with other anti-inflammatory analgesics, particularly aspirin. However, COX-2 inhibitors do not reduce the ability of platelets to form clots, a benefit associated with aspirin and other nonselective COX inhibitors.
Preferences in COX selectivity and the possibility of additional molecular actions of NSAIDs may explain differences in the therapeutic effects between aspirin, acetaminophen, and NSAIDs. For example, while aspirin is effective in reducing fever, as well as relieving inflammation, acetaminophen and NSAIDs are more potent antipyretic (fever-reducing) analgesics. Acetaminophen, on the other hand, possesses inferior anti-inflammatory activity compared with aspirin and NSAIDs and thus is relatively ineffective in treating inflammatory conditions such as rheumatoid arthritis. Despite this, acetaminophen is a popular mild analgesic and antipyretic and is a suitable alternative to aspirin for patients who develop severe symptoms of stomach irritation, because it is not as harmful to the gastrointestinal tract.
As might be expected from their common mechanisms of action, many of the anti-inflammatory analgesic drugs share similar side effects. Hypersensitivity responses to aspirin-like drugs are thought to be due to an accumulation of prostaglandins after the pathways that break down prostaglandins are blocked. These responses can be fatal when very strong anti-inflammatory compounds are given. Inhibition of prostaglandin synthesis may result in other serious side effects, such as peptic ulcers and a reduced ability of platelets in the blood to aggregate and form clots. The latter effect, however, has given aspirin an added use as a prophylactic antithrombotic drug to reduce chances of cardiac or cerebral vascular thrombosis—the formation of a clot in a blood vessel in the heart or brain. Some aspirin-like analgesics also have specific toxic effects: liver damage occasionally occurs after administration of acetaminophen, and renal toxicity is sometimes seen with use of NSAIDs. Aspirin itself, taken in overdose, can cause deafness, ringing in the ears, diarrhea, nausea, and headache, which disappear when the dose is reduced or stopped. Aspirin is also thought to be a causative agent of Reye syndrome, a rare and serious degenerative disease of the brain and fatty tissue of the liver that accompanies certain viral infections in children and young adults.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline