Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 Today 20:01:29

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 52,440

Infrared

Infrared

Gist

Infrared is electromagnetic radiation with wavelengths longer than visible light but shorter than microwaves. It is invisible to the human eye, but we feel it as heat. Infrared light has practical applications, such as in remote controls, thermal cameras, and medical therapies, and it also plays a role in astronomy and scientific research.

Infrared uses range from everyday technology like remote controls and fiber optic cables to more specialized applications in thermal imaging, heating, cooking, and astronomy. Infrared radiation is also used in medicine for heating, pain relief, and healing, and in military and security contexts for night vision. 

Summary

Infrared waves, or infrared light, are part of the electromagnetic spectrum. People encounter Infrared waves every day; the human eye cannot see it, but humans can detect it as heat.

A remote control uses light waves just beyond the visible spectrum of light—infrared light waves—to change channels on your TV. This region of the spectrum is divided into near-, mid-, and far-infrared. The region from 8 to 15 microns (µm) is referred to by Earth scientists as thermal infrared since these wavelengths are best for studying the longwave thermal energy radiating from our planet.

In 1800, William Herschel conducted an experiment measuring the difference in temperature between the colors in the visible spectrum. He placed thermometers within each color of the visible spectrum. The results showed an increase in temperature from blue to red. When he noticed an even warmer temperature measurement just beyond the red end of the visible spectrum, Herschel had discovered infrared light!

Many objects in the universe are too cool and faint to be detected in visible light but can be detected in the infrared. Scientists are beginning to unlock the mysteries of cooler objects across the universe such as planets, cool stars, nebulae, and many more, by studying the infrared waves they emit.

The Cassini spacecraft captured this image of Saturn's aurora using infrared waves. The aurora is shown in blue, and the underlying clouds are shown in red. These aurorae are unique because they can cover the entire pole, whereas aurorae around Earth and Jupiter are typically confined by magnetic fields to rings surrounding the magnetic poles. The large and variable nature of these aurorae indicates that charged particles streaming in from the Sun are experiencing some type of magnetism above Saturn that was previously unexpected.

Infrared radiation is that portion of the electromagnetic spectrum that extends from the long wavelength, or red, end of the visible-light range to the microwave range. Invisible to the eye, it can be detected as a sensation of warmth on the skin. The infrared range is usually divided into three regions: near infrared (nearest the visible spectrum), with wavelengths 0.78 to about 2.5 micrometres (a micrometre, or micron, is {10}^{-6} metre); middle infrared, with wavelengths 2.5 to about 50 micrometres; and far infrared, with wavelengths 50 to 1,000 micrometres. Most of the radiation emitted by a moderately heated surface is infrared; it forms a continuous spectrum. Molecular excitation also produces copious infrared radiation but in a discrete spectrum of lines or bands.

Details

Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those of red light (the longest waves in the visible spectrum), so IR is invisible to the human eye. IR is generally (according to ISO, CIE) understood to include wavelengths from around 780 nm (380 THz) to 1 mm (300 GHz). IR is commonly divided between longer-wavelength thermal IR, emitted from terrestrial sources, and shorter-wavelength IR or near-IR, part of the solar spectrum. Longer IR wavelengths (30–100 μm) are sometimes included as part of the terahertz radiation band. Almost all black-body radiation from objects near room temperature is in the IR band. As a form of EMR, IR carries energy and momentum, exerts radiation pressure, and has properties corresponding to both those of a wave and of a particle, the photon.

It was long known that fires emit invisible heat; in 1681 the pioneering experimenter Edme Mariotte showed that glass, though transparent to sunlight, obstructed radiant heat. In 1800 the astronomer Sir William Herschel discovered that infrared radiation is a type of invisible radiation in the spectrum lower in energy than red light, by means of its effect on a thermometer. Slightly more than half of the energy from the Sun was eventually found, through Herschel's studies, to arrive on Earth in the form of infrared. The balance between absorbed and emitted infrared radiation has an important effect on Earth's climate.

Infrared radiation is emitted or absorbed by molecules when changing rotational-vibrational movements. It excites vibrational modes in a molecule through a change in the dipole moment, making it a useful frequency range for study of these energy states for molecules of the proper symmetry. Infrared spectroscopy examines absorption and transmission of photons in the infrared range.

Infrared radiation is used in industrial, scientific, military, commercial, and medical applications. Night-vision devices using active near-infrared illumination allow people or animals to be observed without the observer being detected. Infrared astronomy uses sensor-equipped telescopes to penetrate dusty regions of space such as molecular clouds, to detect objects such as planets, and to view highly red-shifted objects from the early days of the universe. Infrared thermal-imaging cameras are used to detect heat loss in insulated systems, to observe changing blood flow in the skin, to assist firefighting, and to detect the overheating of electrical components. Military and civilian applications include target acquisition, surveillance, night vision, homing, and tracking. Humans at normal body temperature radiate chiefly at wavelengths around 10 μm. Non-military uses include thermal efficiency analysis, environmental monitoring, industrial facility inspections, detection of grow-ops, remote temperature sensing, short-range wireless communication, spectroscopy, and weather forecasting.

Additional Information

Infrared radiation (IR), or infrared light, is a type of radiant energy that's invisible to human eyes but that we can feel as heat. All objects in the universe emit some level of IR radiation, but two of the most obvious sources are the sun and fire.

IR is a type of electromagnetic radiation, a continuum of frequencies produced when atoms absorb and then release energy. From highest to lowest frequency, electromagnetic radiation includes gamma-rays, X-rays, ultraviolet radiation, visible light, infrared radiation, microwaves and radio waves. Together, these types of radiation make up the electromagnetic spectrum.

British astronomer William Herschel discovered infrared light in 1800, according to NASA. In an experiment to measure the difference in temperature between the colors in the visible spectrum, he placed thermometers in the path of light within each color of the visible spectrum. He observed an increase in temperature from blue to red, and he found an even warmer temperature measurement just beyond the red end of the visible spectrum.

Within the electromagnetic spectrum, infrared waves occur at frequencies above those of microwaves and just below those of red visible light, hence the name "infrared." Waves of infrared radiation are longer than those of visible light, according to the California Institute of Technology (Caltech). IR frequencies range from about 300 gigahertz (GHz) up to about 400 terahertz (THz), and wavelengths are estimated to range between 1,000 micrometers (µm) and 760 nanometers (2.9921 inches), although these values are not definitive, according to NASA.

Similar to the visible light spectrum, which ranges from violet (the shortest visible-light wavelength) to red (longest wavelength), infrared radiation has its own range of wavelengths. The shorter "near-infrared" waves, which are closer to visible light on the electromagnetic spectrum, don't emit any detectable heat and are what's discharged from a TV remote control to change the channels. The longer "far-infrared" waves, which are closer to the microwave section on the electromagnetic spectrum, can be felt as intense heat, such as the heat from sunlight or fire, according to NASA.

IR radiation is one of the three ways heat is transferred from one place to another, the other two being convection and conduction. Everything with a temperature above around 5 degrees Kelvin (minus 450 degrees Fahrenheit or minus 268 degrees Celsius) emits IR radiation. The sun gives off half of its total energy as IR, and much of the star's visible light is absorbed and re-emitted as IR, according to the University of Tennessee.

Household uses

Household appliances such as heat lamps and toasters use IR radiation to transmit heat, as do industrial heaters such as those used for drying and curing materials. Incandescent bulbs convert only about 10 percent of their electrical energy input into visible light energy, while the other 90 percent is converted to infrared radiation, according to the Environmental Protection Agency.

Infrared lasers can be used for point-to-point communications over distances of a few hundred meters or yards. TV remote controls that rely on infrared radiation shoot out pulses of IR energy from a light-emitting diode (LED) to an IR receiver in the TV, according to How Stuff Works. The receiver converts the light pulses to electrical signals that instruct a microprocessor to carry out the programmed command.

Infrared sensing

One of the most useful applications of the IR spectrum is in sensing and detection. All objects on Earth emit IR radiation in the form of heat. This can be detected by electronic sensors, such as those used in night vision goggles and infrared cameras.

A simple example of such a sensor is the bolometer, which consists of a telescope with a temperature-sensitive resistor, or thermistor, at its focal point, according to the University of California, Berkeley (UCB). If a warm body comes into this instrument's field of view, the heat causes a detectable change in the voltage across the thermistor.

Night vision cameras use a more sophisticated version of a bolometer. These cameras typically contain charge-coupled device (CCD) imaging chips that are sensitive to IR light. The image formed by the CCD can then be reproduced in visible light. These systems can be made small enough to be used in hand-held devices or wearable night-vision goggles. The cameras can also be used for gun sights with or without the addition of an IR laser for targeting.

Infrared spectroscopy measures IR emissions from materials at specific wavelengths. The IR spectrum of a substance will show characteristic dips and peaks as photons (particles of light) are absorbed or emitted by electrons in molecules as the electrons transition between orbits, or energy levels. This spectroscopic information can then be used to identify substances and monitor chemical reactions.

According to Robert Mayanovic, professor of physics at Missouri State University, infrared spectroscopy, such as Fourier transform infrared (FTIR) spectroscopy, is highly useful for numerous scientific applications. These include the study of molecular systems and 2D materials, such as graphene.

Infrared astronomy

Caltech describes infrared astronomy as "the detection and study of the infrared radiation (heat energy) emitted from objects in the universe." Advances in IR CCD imaging systems have allowed for detailed observation of the distribution of IR sources in space, revealing complex structures in nebulas, galaxies and the large-scale structure of the universe.

One of the advantages of IR observation is that it can detect objects that are too cool to emit visible light. This has led to the discovery of previously unknown objects, including comets, asteroids and wispy interstellar dust clouds that seem to be prevalent throughout the galaxy.

IR astronomy is particularly useful for observing cold molecules of gas and for determining the chemical makeup of dust particles in the interstellar medium, said Robert Patterson, professor of astronomy at Missouri State University. These observations are conducted using specialized CCD detectors that are sensitive to IR photons.

Another advantage of IR radiation is that its longer wavelength means it doesn't scatter as much as visible light, according to NASA. Whereas visible light can be absorbed or reflected by gas and dust particles, the longer IR waves simply go around these small obstructions. Because of this property, IR can be used to observe objects whose light is obscured by gas and dust. Such objects include newly forming stars imbedded in nebulas or the center of Earth's galaxy.

In_Comparison_to_Other_Radiant_Energy_Electromagnetic_Spectrum_-min_600x600.jpg?v=1607397565


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

Board footer

Powered by FluxBB