You are not logged in.
Pages: 1
cos(a-b) + cos(b-c) + cos(c-a) = -3/2
The value (sina + sinb + sinc)/(cosa + cosb + cosc) is:
(i)Some Rational Number
(ii)Infinity
(iii)0
(iv)Indeterminate
Offline
(sin(a) + sin(b) + sin(c))^2 + (cos(a) + cos(b) + cos(c))^2
= sin^2(a) + sin^2(b) + sin^2(c) + cos^2(a) + cos^2(b) + cos^2(c)
+ 2sin(a)sin(b) + 2sin(a)sin(c) + 2sin(b)sin(c)
+ 2cos(a)cos(b) + 2cos(a)cos(c) + 2cos(b)cos(c)
= 3 + 2(cos(a-b) + cos(b-c) + cos(c-a))
= 0
Assuming a,b,c are real we must have
sin(a) + sin(b) + sin(c) = cos(a) + cos(b) + cos(c) = 0
and so the answer is (iv).
Offline
Pages: 1