You are not logged in.
( I ) Principle
Certain years ago I had also developed an algorithm to generate
primes from existing ones . The principle is not complicated .
Let S denotes a set of distinct consecutive primes starting
from 2 , 3 and onwards up to a certain prime Pn . If we
divide S into 2 parts A and B in any way , and let π A
denotes the product of primes contained in A ,
while π B denotes the product of primes contained in
B . Thus π A and π B are relatively prime . ( If one of
the 2 subsets of S , say A is a void set , then π A will be
defined to be 1 . )
Let n1 denotes π A + π B and n2 denotes | π A - π B | .
It is clear that both n1 and n2 are not divisable by any
of the primes ≦ Pn . n1 or n2 may be prime , composit ( with all
prime factors > Pn ) , or = 1 . ( Only for n2 .)
Let P (n+1) denotes the prime no. just > Pn , if n1 or n2 < P (n+1) ^ 2 ,
then n1 or n2 must be prime since the smallest composit no. with prime
factors all > Pn will be [ P (n+1)] ^ 2 . The value of P (n+1) ^ 2 will be
referred as the limitation .
Examples :
( I ) Let S = { 2 , 3 , 5 } , thus limitation = 7 ^ 2 = 49 .
(1) Take A = { 2 , 3 } and B = { 5 } , thus πA = 6 and π B = 5 .
Then n1 = 6 + 5 = 11 ( prime since 11 < 49 )
n2 = 6 - 5 = 1
(2) Take A = { 2 , 5 } and B = { 3 } , thus π A = 10 .
Then n1 = 10 + 3 = 13 ( prime )
n2 = 10 - 3 = 7 ( p )
(3) Take A = { 2 } and B = { 3 , 5 } , thus π B = 15 .
Then n1 = 2 + 15 = 17 ( p )
n2 = 15 - 2 = 13 ( p )
The prime no. so generated will not necessarily be distinct , as we have
13 = 10 + 3 = 15 - 2 .
Offline
Hi mr.wong;
You are in Help Me. What do you need help with?
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym ,
I need help to improve this algorithm latter !
Offline
In your examples, one of A and B has only one element in it. Do you always want to split {n elements} into {1 element}, {n-1 elements}?
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Hi bobbym ,
No , it is not the case .
Offline
( II ) Primes with exponents > 1
In fact the primes contained in S are not necessarily distinct .
Each prime may repeat any times , but when divided into 2 groups
every same prime should be put into the same group . Thus the products
of elements of the 2 groups are still relatively prime .
If there are n no. of a certain prime Pr in a group , they may be
denoted concisely as ( Pr ) ^ n .
Example
Let S = { 2 , 3 ,3 ,3 , 5 , 5 } , limitation is still 49 .
(1) Take A = { 2 , 3 ,3 , 3} and B = { 5 , 5} ,
then A may also be denoted by { 2 , 3 ^ 3 } , while B by { 5 ^ 2 }
thus πA = 2 * 27 = 54 and π B = 25 .
Then n1 = 54 + 25 = 79 . Since 79 > 49 , we are not sure
whether it is a prime or not .
n2 = 54 - 25 = 29 ( p )
(2) Take A = { 2 , 5^2 } and B = ( 3 ^3 }
thus πA = 50 and π B = 27
Then n1 = 50 + 27 = 77 ( > 49 )
n2 = 50 - 27 = 23 ( p )
When the exponents of various primes may take values > 1 ,
we can generate more primes with the same set of distinct
primes .
Offline
( III ) Extension of limitation from [ P(n+1)] ^2 to P(n+1) * P(n+2)
When the no. of primes contained in S increases , the
values of π A and π B also increase . The values of n1 and n2 ,
their sum and difference , will frequently be greater then [ P(n+1)] ^2 ,
the limitation . ( Though the limitation will also increase . )
To make the algorithm more usable , we extend the limitation from
[ P(n+1)] ^2 to P(n+1) * P(n+2) , where P(n+2) is the prime no.
just greater than P(n+1) . Since the composite no . just greater than
[ P(n+1)] ^2 and not divisible by primes ≦ Pn is P(n+1) * P(n+2) .
If n1 or n2 so generated , though > P(n+1)] ^2 ,
but < P(n+1) * P(n+2) , then it is still a prime .
Example
Let S = { 2^2, 3^3 , 5^2 } , then limitation L1 = 7^2 = 49 ,
extended limitation L2 = 7 * 11 = 77 .
(1) Take A = { 2^2 , 5^2 } and B = ( 3^3 }
thus πA = 100 and π B = 27 .
Then n2 = 100 - 27 = 73 . Since 73 > 49 but < 77 , therefore
73 is a prime .
(2) Take A = { 2^2 , 3^3 } and B = { 5^2 } , thus
πA = 4 * 27 = 108 and π B = 25 .
Then n2 = 108 - 25 = 83 > 77 . We are not sure whether
83 is a prime or not .
By extending the limitation we have more chance to generate
more primes .
Offline
( IV ) To generate twin primes
If the difference of 2 primes = 2 , then they are called " twin primes " .
We may use the algorithm under certain arrangement to generate twin
primes .
( i ) For a set S containing primes , if we divide it into A , being
S itself and B , being a void set , then π B will be 1 . Thus
n1 = π A + 1 and n2 = π A - 1 , i.e. n1 - n2 = 2 .
If both n1 and n2 are primes , then they are twin primes .
Examples
( 1 ) Let S = { 2 , 3 , 5 } , thus limitation = 7 ^ 2 = 49 and L2 = 77
Then π S = 30 and π { } = 1 ,
n1 = 30 + 1 = 31 and n2 = 30 - 1 = 29 ,
Since both 31 and 29 < 49 ,
Thus they are twin primes .
( 2 ) Let S = { 2^2 , 3 , 5 } ,
Then π S = 60 and π { } = 1 ,
n1 = 60 + 1 = 61 and n2 = 60 - 1 = 59 ,
Though both 61 and 59 > 49 , but since < 77 ,
Therefore they are also twin primes .
( ii ) For 2 sets S1 and S2 such that S1 contains 2 and
other primes as elements while S2 contains 2^2 = 4 and the
same rest primes as elements .
Example
Let S1 = { 2 , 3 , 5 , 7 } and divided into A = { 2 } and
B = { 3 , 5 , 7 }
while S2 = { 4 , 3 , 5 , 7 } and divided into A = { 4 } and
B = { 3 , 5 , 7 } .
Then Limitation = 11^2 = 121 for both cases .
For S1 , πA = 2 and πB = 105 , thus n1 = 105 + 2 = 107
and n2 = 105 - 2 = 103 .
While for S2 , πA = 4 and πB = 105 , thus n1 = 105 + 4 = 109
and n2 = 105 - 4 = 101 .
The difference of both n1 = 2 , and the difference of both n2
also = 2 . Since all the 4 n's < 121 , thus they are all primes .
So 2 pairs of twin primes have been generated .
Offline
( V ) The ultimate limitation L3
After the extension of limitation from L1 to L2 , the chance of the number generated
to be a prime becomes greater . Now we try to extend the limitation a bit further .
If a number n generated > L2 , i.e. [ P(n+1) * P(n+2) ] , but < [P ( n + 3 )] ^2 ( denoted by L3 ) , then n will be prime if n is not divisible by both P (n+1) and P (n+2) .
To find whether n is divisible by P (n+1) and P (n+2) or not , we can divide n by
P (n+1) and P( n+2) one by one , or once with the following method .
Let k = n - P(n+1) * P(n+2) ⇒ n = P(n+1) * P(n+2) + k , then factorize k .
If k does not contain either P(n+1) or P(n+2) as factor , then n also ,
thus n is a prime . Otherwise n will be composite .
Examples
Let S = { 2 , 3 , 5 , 7 } and divided into S and { } .
Then L1 = 11 ^2 = 121 ; L2 = 11 * 13 = 143 and L3 = 17 ^2 = 289 ,
πS = 210 and π { } = 1 .
Then n1 = 210 +1 = 211 , 211 > 143 but < 289 thus we test whether 211 is divisible
by 11 or 13 .
Since 211 - 143 = 68 ⇒ 211 = 143 + 68
= 11 * 13 + 4 * 17
Thus 68 then 211 is not factorable by 11 or 13 ( also not by 17 ) ,
therefore 211 is a prime .
For n2 = 210 - 1 = 209 , also > 143 but < 289 .
Since 209 - 143 = 66 ⇒ 209 = 143 + 66
= 11 * 13 + 6 * 11 ,
therefore 209 contains 11 as a factor , thus is a composite .
L3 or P ( n + 3 ) ^2 , will be referred as the ultimate limitation .
Offline
( VI ) To generate primes with more than 2 groups
Instead of partition S , a set with r primes ( r ≧ 3 ) into 2 groups only ,
we may form r groups ( denoted by G ) of primes from S , such that each
group contains exactly r -1 primes taken from S , i.e. , each prime will not exist
in one and only one group .
Let π G denotes the product of primes ( each with exponents ≧ 1 )
contained in each G . If we take the combined sum or difference of every π G ,
the value n obtained will not be divisible by any prime contained in S .
If n < L , the limitation then n will be prime or = 1 .
Examples
( I ) Let S = { 2 , 3 , 5 } , thus L1 = 49 and L2 = 77 .
( 1 ) Take G1 = { 2 , 3 } , G2 = { 2 , 5 } and G3 = { 3 , 5 } ,
Thus G1 lacks the prime 5 , G2 lacks 3 and G3 lacks 2
as shown in the following table .
S | 2 , 3 , 5 |
G1| 2 , 3 , / | ----- π G1 = 6
G2| 2 , / , 5 | ----- π G2 = 10
G3| / , 3 , 5 | ----- π G3 = 15
Then n1 = 6 + 10 + 15 = 31 ( p )
n2 = 6 + 10 - 15 = 1
n3 = 6 - 10 + 15 = 11 ( p )
and n4 = -6 + 10 + 15 = 19 (p)
It seems more primes can be generated in this way .
Offline
( VII ) Incomplete groups and complete groups
In section ( VI ) we have generated primes with r groups each containing r-1 primes
taken from the set S . These groups will be referred as " incomplete groups " .
In fact other groups which contain all the r primes ( referred as " complete groups ") may also participate to generate primes with those incomplete groups . The result after combined sum or difference of them is still not divisible by every prime contained in S after the joining of complete groups .
Example
As in the table shown in section ( VI ) , if the set S being itself considered as a
complete group , with π S = 2*3*5 = 30 , join the operations of addition or
subtraction with the 3 incomplete groups G1 , G2 and G3 ,
then we may get n1 = 30 + 6 + 10 + 15 = 61 ( p ) since 61 < 77 ( L2 ) .
Also n2 = 30 + 6 + 10 - 15 = 31 ( p )
n3 = 30 + 6 + ( -10 ) + 15 = 41 ( p )
n4 = 30 +( -6 ) + 10 + 15 = 49 ( = L1 )
n5 = - 30 + 6 + 10 + 15 = 1
n6 = 30 + 6 - 10 - 15 = 11 (p)
n7 = 30 - 6 + 10 - 15 = 19 ( p )
n8 = 30 - 6 - 10 + 15 = 29 ( p )
Offline
( VIII ) Primes stored in compartments
In section ( VII ) it can be seen that there is no restriction for the no. of
complete groups . For incomplete groups it seems that the total no. should be
r . However , if originally the primes of S are stored in so-called compartments
inside S where certain compartments contain > 1 distinct primes ( with various exponents ) ,
then the total no. of incomplete groups can be reduced .
For example , let S = { 2 , 3 , 5 , 7 , 11 , 13 , 17 } ----- totally 7 distinct primes . Thus L1 = 19^2 = 361 ,L2 = 19 * 23 = 437 and L3 = 29^2 = 841 .
If the primes are stored in say 3 compartments like :
{ [ 2,3,5] , [ 7,11] , [ 13,17 ] } ;
then we may take G1 = { [ 2^2 ,3,5,] , [ 7,11] , / } = { 60 , 77 , 1 } ,
thus π G1 = 4620
G2 = { [ 2^2,3,5,] , / , [ 13,17 ]} = { 60 , 1 , 221} ,
thus π G2 = 13260
G3 = { / , [7,11] , [ 13,17 ]} = { 1 , 77 , 221 } ,
thus π G3 = 17017
We may get n1 = π G1 + π G1 - π G3
= 4620 + 13260 - 17017
= 863
Since √ 863 = 29.3 thus for 863 to be composite , it must contain prime factor ≦ 29 .
As 863 - 841 ( L 3 ) = 22 = 2 * 11 ⇒ 863 = 29 * 29 + 2 * 11 , thus 863 is not divisible by 29 ;
Also 863 - 437 ( L2 ) = 426 = 2 * 213 = 2 * 3 * 71 ⇒ 863 = 19 * 23 + 2*3*71 , thus 863 is not divisible by 19 nor 23 , since 863 is already not divisible by any prime ≦ 17 , therefore 863 is a prime .
Offline
( IX ) Miscellaneous examples
( i ) Set of primes used without " 5 "
If the set S used to generate primes does not contained 5 as its element , then the n's generated may be divisible by 5 . If this happens it can be easily inspected for the n's so generated will end in 5 . We just exclude all factors of 5 by dividing n by 5 and get the quotient .
Example
Let S = { 2 , 3 , 7 , 11 } thus L1 = 13 ^2 = 169 ; L2 = 13 * 17 = 221
Take A1 = { 2 , 11 } and B1 = { 3 , 7 }
Therefore π A1 = 22 , πB1 = 21
n1 = 22 + 21 = 43 ( p ) ,
n2 = 22 - 21 = 1
Take A2 = { 4 , 11 } , thus π A2 = 44 ,
n3 = π A2 + πB1 = 44 + 21 = 65 while 65 / 5 = 13 ( p )
n4 = π A2 - πB1 = 44 - 21 = 23 ( p )
Take B2 = { 9 , 7 } , thus π B2 = 63 ,
n5 = π A1 + π B2 = 22 + 63 = 85 while 85 / 5 = 17 ( p )
n6 = π A1 - π B2 = 22 - 63 = - 41 ( p )
n7 = π A2 + πB2 = 44 + 63 = 107 ( p )
n8 = π A2 - πB2 = 44 - 63 = - 19 ( p )
Offline
(ii) Set of primes without " 2 " for 3 incomplete groups
If the set S used to generate primes does not contained 2 as its element
with 3 ( or any odd nos. > 3 ) incomplete groups are involved . Then the
product of each group will all be odd , thus the combined sum or difference
of them will also be odd , i.e. , not divisible by 2 .
Example
Let S = { 3 , 5 , 7 , 11 } , thus L1 = 13^2 = 169 , L2 = 13*17 = 221 and L3 = 19 ^2 = 361
Take A = { [ 3 , 5] , 7 , / } , B = { [ 3 , 5] , / , 11 } and C = { / , 7 , 11 }
Thus π A = 105 , π B = 165 , π C = 77 ,
n1 = 105 + 165 + 77 = 347 ( p ) since 347 - 221 = 126 = 2 * 9 * 7
n2 = 105 + 165 - 77 = 193 ( p )
n3 = 105 - 165 + 77 = 17 ( p )
n4 = - 105 + 165 + 77 = 137 ( p )
If complete groups are joined to participate in addition or subtraction with the incomplete groups , more n's can be generated . We may add in an even no. of complete groups , or choose 1 complete group with an additional element of 2 .
For example , let T = { 2 , 3 , 5 , 7 , 11 } , thus π T = 2310
Take A2 = { 9 , 25 , 7 } , thus π A2 = 1575 while B and C remain unchanged .
n5 = 2310 - 1575 - 165 - 77 = 493 , while 493 - 221 = 272 = 4 * 68 = 4 * 4 * 17 , thus 493 contains 17 as a factor .
n6 = 2310 - 1575 - 165 + 77 = 647 ( √ 647 = 25.4 ) , thus we have to check whether 647 is divisible by 13 , 17 , 19 or 23 . As 647 - 13 * 17 = 426 = 6 * 71 , thus 647 is not divisible by 13 nor 17 .
Also 19 * 23 = 437 while 647 - 437 = 210 ( does not contain 19 nor 23 as factor ) , therefore 647 is a prime .
Offline
(iii) Set of primes without " 2 " and " 5 " for 3 incomplete groups
If the set S used to generate primes does not contain 2 and 5
as its elements while 3 incomplete groups are involved . Then the
combined sum or difference of them is not divisible by 2 but may
be divisible by 5 .
Example
Let S = { 3 , 7 , 11 , 13 } , then L1 = 17 ^2 = 289 ; L2 = 17 * 19 = 323 ;
and L3 = 23 ^2 = 529 .
Take A = {[ 3 , 7 ] , 11 , / } , thus π A = 231
Take B = {[ 3 , 7 ] , / , 13 } , thus π B = 273
Take C = { / , 11 , 13 } , thus π C = 143
n1 = 231 + 273 + 143 = 647 ( √ 647 = 25.4 ) then we have to check whether 647 is divisible by 17 , 19 or 23 . As 647 - 323 = 324 , thus 647 = 2 * 17 * 19 + 1
so 647 is not divisible by 17 nor 19 . Also 647 - 529 = 118 = 2 * 59
so 647 is not divisible by 23 , therefore 647 is a prime .
n2 = 231 + 273 - 143 = 361 = 323 + 38 = 323 + 2 * 19 , thus 361 is divisible
by 19 .
n3 = 231 - 273 + 143 = 101 ( p )
n4 = -231 + 273 + 143 = 185 while 185 / 5 = 37 ( p )
Offline
( X ) Summary :
If a , b and c are relatively prime , then
( 1 ) a ± b is not divisible by a or b .
( 2 incomplete groups )
( 2 ) ab ± 1 is not divisible by a or b .
( 1 complete group with 1 void group . )
( 3 ) ab ± a ± b is not divisible by a or b .
( 1 complete group with 2 incomplete groups . )
( 4 ) ab ± ac ± bc is not divisible by a , b or c .
( 3 incomplete groups . )
( 5 ) abc ± ab ± ac ± bc is not divisible by a , b or c .
( 1 complete group with 3 incomplete groups . )
Defects of this algorithm :
The limitation is usually not large enough compared with the n's so generated . If we want to generate bigger primes , the no. of basic primes needed should be more thus the limitation will become greater . But it is not easy to distribute the basic primes into , say 2 incomplete groups so that the n's generated will be smaller than the limitation .
In the following we shall demonstrate an example how to arrange the basic primes for 2 incomplete groups .
Let S = { 2 , 3 , 5 , 7 , 11 , 13 } be split into 2 groups A and B . Thus L1 = 17 ^2 = 289
and L2 = 17 * 19 = 323 .
Take A = { 2 , 7 , 13 } and B = { 3 , 5 , 11 } , thus π A = 182 and πB = 165
(1) n1= 182 - 165 = 17 (P)
(2) Add 2 to A i.e. A1 = { 2 , 2 , 7 , 13 } thus π A1 = 2 *182 = 364
and get n2 = π A1 - πB = 364 - 165 = 199 (P)
(3) Add 3 to B i.e. B1 = { 9 , 5 , 11 } thus πB1 = 3 *165 = 495
and get n3 = πB1 - π A = 495 - 182 = 313 (P)
(4) Get n4 = πB1 - π A1 = 495 - 364 = 131 (P)
(5) Add 4 to A and 5 to B , thus π A2 = 4 * 182 = 728 while πB2 = 5 * 165 = 825
and get n5 = 825 - 728 = 97 (P)
(6) Get n6 = 4 * 182 - 3 * 165 = 728 - 495 = 233 (P)
(7) Add 7 to A and 9 to B , thus 7 * π A = 7 * 182 = 1274 while 9 * 165 = 1485
and get n7 = 1485 - 1274 = 211 (P)
(8) Add 8 to A and 9 to B , thus 8 * 182 = 1456 , and get n8 = 1485 - 1456 = 29 (P)
(9) Add 13 to A and 15 to B , thus 13 * 182 = 2366 while 15 * 165 = 2475
and get n9 = 2475 - 2366 = 109 (P)
(10) Add 14 to A and 15 to B , thus 14 * 182 = 2548 , and get n10 = 2548 - 2475 = 73 (P)
(11) Add 14 to A and 17 to B , ( notice that L1 will become 19 ^2 = 361 and L2 will become
19 * 23 = 437 ) thus 17 * 165 = 2805 , and get n11 = 2805 - 2548 = 257 (P)
(12) Add 14 to A and 19 to B , thus 14 * 182 = 2548 while 19 * 165 = 3135 , and get
n12 = 3135 - 2548 = 587 . By actual division we find that 587 is not divisible by 17 .
Thus L1 becomes 23 ^2 = 529 and L2 becomes 23 * 29 = 667 . Therefore 529 is a prime .
(13) Add 16 to A and 17 to B , thus 16 *182 = 2912 and 17 * 165 = 2805 , and get
n13 = 2912 - 2805 = 107 (P)
(14) Add 16 to A and 19 to B , thus 16 * 182 = 2912 and 19 * 165 = 3135 , and get
n14 = 3135 - 2912 = 223 (P)
(15) Add 17 to A and 19 to B , ( then L1 becomes 23 ^2 = 529 and L2 becomes 23 * 29 = 667 )
thus 17 * 182 = 3094 while 19 * 165 = 3135 , and get n15 = 3135 - 3094 = 41 (P)
(16) Add 19 to A and 23 to B , thus 19 * 182 = 3458 and 23 * 165 = 3795
and get n16 = 3795 -3458 = 337 . Since 337 is not divisible by 17 , therefore 337 is a prime .
(17) Add 23 to A and 25 to B , thus 23 * 182 = 4186 while 25 * 165 = 4125
and get n17 = 4186 - 4125 = 61 (P)
(18) Add 26 to A and 27 to B , thus 26 * 182 = 4732 and 27 * 165 = 4455 ,
and get n18 = 4732 - 4455 = 277 (P)
(19) Add 28 to A and 29 to B , thus 28 * 182 = 5096 while 29 * 165 = 4785 ,
and get n19 = 5096 - 4785 = 311 (P)
(20) Add 28 to A and 31 to B , thus 28 * 182 = 5096 while 31 * 165 = 5115 ,
and get n 20 = 5115 - 5096 = 19 (P)
(21) Add 29 to A and 31 to B , thus 29 * 182 = 5278 while 31 * 165 = 5115 ,
and get n21 = 5278 - 5115 = 163 (P)
(22) Add 31 to A and 33 to B , thus 31 * 182 = 5642 while 33 * 165 = 5445 ,
and get n22 = 5642 - 5445 = 197 (P)
Summary in Table
A={2 ,7 ,13} , π A = 182 ; B={3 ,5 ,11} ,πB = 165 ; difference ; L1 = 289 ; L2 = 323
(1) 182 * 1 = 182 165 * 1 = 165 17
(2) 182 * 1 = 182 165 * 3 = 495 313
(3) 182 * 2 = 364 165 * 1 = 165 199
(4) 182 * 2 = 364 165 * 3 = 495 131
(5) 182 * 4 = 728 165 * 5 = 825 97
(6) 182 * 4 = 728 165 * 3 = 495 233
(7) 182 * 7 = 1274 165 * 9 = 1485 211
(8) 182 * 8 = 1456 165 * 9 = 1485 29
(9) 182 * 13 = 2366 165 * 15 = 2475 109
(10) 182 * 14 = 2548 165 * 15 = 2475 73
(11) 182 * 14 = 2548 165 * 17 = 2805 257
(12) 182 * 14 = 2548 165 * 19 = 3135 587
(13) 182 * 16 = 2912 165 * 17 = 2805 107
(14) 182 * 16 = 2912 165 * 19 = 3135 223
(15) 182 * 17 = 3094 165 * 19 = 3135 41
(16) 182 * 19 = 3458 165 * 23 = 3795 337
(17) 182 * 23 = 4186 165 * 25 = 4125 61
(18) 182 * 26 = 4732 165 * 27 = 4455 277
(19) 182 * 28 = 5096 165 * 29 = 4785 311
(20) 182 * 28 = 5096 165 * 31 = 5115 19
(21) 182 * 29 = 5278 165 * 31 = 5115 163
(22) 182 * 31 = 564 165 * 33 = 5445 197
(23) 182 * 32 = 582 165 * 33 = 5445 379
(24) 182 * 34= 6188 165 * 33 = 5445 743
(25) 182 * 52 = 9464 165 * 55 = 9075 389
(26) 182 * 56 = 10192 165 * 57 = 9405 787
(27) 182 * 101 = 18382 165 * 109 = 17985 397
(28) 182 * 97 = 17654 165 * 103 = 16995 659
Last edited by mr.wong (2016-11-23 16:10:16)
Offline
Numbers with value < 1000 generated mainly from set of primes < 17 .
Let S = { 2 , 3 , 5 , 7 , 11 , 13 } and take A = { 2 , 7 , 13 } and B = { 3 , 5 , 11 } , thus π A = 182 and πB = 165 while L1 = 17 ^2 = 289 .
Multiply 182 by i , and 165 by j where i and j are positive integers . If i is relatively prime with 165 and j , while j is relatively prime with 182 and i , then 182 * i is relatively prime with 165 * j .
Let n be 182 * i ± 165 * j for various values of i and j , clearly n is not divisible by primes < 17 , nor every prime factors of i and j .
If n generated ( as sum or difference ) < 289 , then n = 1 or is a prime .
If n > 289 , then usually we have to check further the divisibility of n by
consecutive primes from 17 up to the prime just < √n ( may be by actual division ) , excluding those prime factors of i or j . If every such prime does not divide n , then n is a prime .
In the following we shall list all such n's with value < 1000 .
( A ) sum
(1) 182 * 1 + 165 * 1 = 347 ( P )
(2) 182 * 1 + 165 * 3 = 677 ( P )
(3) 182 * 1 + 165 * 5 = 1007
(4) 182 * 2 + 165 * 1 = 529 ( = 23 * 23 )
(5) 182 * 2 + 165 * 3 = 859 ( P )
(6) 182 * 4 + 165 * 1 = 893 ( = 19 * 47 )
( B ) difference
(7) 182 * 1 = 182 - 165 * 1 = 165 = 17 ( P )
(8) 182 * 1 = 182 - 165 * 3 = 495 = -313 ( P )
(9) 182 * 1 = 182 - 165 * 5 = 825 = - 643 (P)
(10) 182 * 2 = 364 - 165 * 1 = 165 = 199 (P)
(11) 182 * 2 = 364 - 165 * 3 = 495 = -131 (P)
(12) 182 * 2 = 364 - 165 * 5 = 825 = -461 (P)
(13) 182 * 4 = 728 - 165 * 1 = 165 = 563 ( P)
(14) 182 * 4 = 728 - 165 * 3 = 495 = 233 ( P )
(15) 182 * 4 = 728 - 165 * 5 = 825 = -97 ( P )
(16) 182 * 4 = 728 - 165 * 9 = 1485 = - 757 ( P )
(17) 182 * 7 = 1274 - 165 * 3 = 495 = 779 ( = 19 * 41)
(18) 182 * 7 = 1274 - 165 * 5 = 825 = 449 ( P )
(19) 182 * 7 = 1274 - 165 * 9 = 1485 = - 211( P )
(20) 182 * 7 = 1274 - 165 *11 = 1815 = - 541(P)
(21) 182 * 8 = 1456 - 165 * 3 = 495 = 961( = 31 * 31)
(22) 182 * 8 = 1456 - 165 * 5 = 825 = 631 ( P )
(23) 182 * 8 = 1456 - 165 * 9 = 1485 = - 29 ( P)
(24) 182 * 8 = 1456 - 165 *11 = 1815 = - 359 (P)
(25) 182 * 13 = 2366 - 165 * 9 = 1485 = 881 (P)
(26) 182 * 13 = 2366 - 165 *11 = 1815 = 551( = 19 * 29)
(27) 182 * 13 = 2366 - 165 * 15 = 2475 = - 109 (P)
(28) 182 * 13 = 2366 - 165 * 17 = 2805 = - 439(P)
(29) 182 * 13 = 2366 - 165 * 19 = 3135 = - 769(P)
(30) 182 * 14 = 2548 - 165 *11 = 1815 = 733(P)
(31) 182 * 14 = 2548 - 165 * 15 = 2475 = - 73(P)
(32) 182 * 14 = 2548 - 165 * 17 = 2805 = - 257(P)
(33) 182 * 14 = 2548 - 165 * 19 = 3135 = - 587(P)
(34) 182 * 16 = 2912 - 165 * 15 = 2475 = 437(=19 * 23)
(35) 182 * 16 = 2912 - 165 *17 = 2805 = 107(P)
(36) 182 * 16 = 2912 - 165 * 19 = 3135 = - 223(P)
(37) 182 * 16 = 2912 - 165 * 23 = 3795 = - 883(P)
(38) 182 * 17 = 3094 - 165 * 15 = 2475 = 619(P)
(39) 182 * 17 = 3094 - 165 * 19 = 3135 = - 41(P)
(40) 182 * 17 = 3094 - 165 * 23 = 3795 = 701(P)
(41) 182 * 19 = 3458 - 165 * 15 = 2475 = 983 (P)
(42) 182 * 19 = 3458 - 165 *17 = 2805 = 653(P)
(43) 182 * 19 = 3458 - 165 * 23 = 3795 = - 337(P)
(44) 182 * 19 = 3458 - 165 * 25 = 4125 = - 667 ( = 23 * 29)
(45) 182 * 23 = 4186 - 165 * 25 = 4125 = 61 (P)
(46) 182 * 23 = 4186 - 165 * 27 = 4455 = - 269(P)
(47) 182 * 23 = 4186 - 165 *29 = 4785 = - 599(P)
(48) 182 * 26 = 4732 - 165 * 23 = 3795 = 937(P)
(49) 182 * 26 = 4732 - 165 * 25 = 4125 = 607(P)
(50) 182 * 26 = 4732 - 165 * 27 = 4455 = 277(P)
(51) 182 * 26 = 4732 - 165 * 29 = 4785 = - 53(P)
(52) 182 * 26 = 4732 - 165 * 31 = 5115 = - 383(P)
(53) 182 * 26 = 4732 - 165 * 33 = 3795 = 713 ( = 23 * 31 )
(54) 182 * 28 = 5096 - 165 * 25 = 4125 = 971 (P)
(55) 182 * 28 = 5096 - 165 * 27 = 4455 = 641 (P)
(56) 182 * 28 = 5096 - 165 * 29 = 4785 = 311 (P)
(57)182 * 28 = 5096 - 165 * 31 = 5115 = - 19 (P)
(58)182 * 28 = 5096 - 165 * 33 = 5445 = - 349 (P)
(59) 182 * 29 = 5278 - 165 * 27 = 4455 = 823 (P)
(60) 182 * 29 = 5278 - 165 * 31 = 5115 = 163 (P)
(61)182 * 29 = 5278 - 165 * 33 = 5445 = - 167 (P)
(62)182 * 29 = 5278 - 165 * 37 = 6105 = - 827 (P)
(63) 182 * 31 = 5642 - 165 * 29 = 4785 = 857 (P)
(64) 182 * 31 = 5642 - 165 * 33 = 5445 = 197 (P)
(65) 182 * 31 = 5642 - 165 * 37 = 6105 = - 463 (P)
(66) 182 * 32 = 5824 - 165 * 31 = 5115 = 709 (P)
(67) 182 * 32 = 5824 - 165 * 33 = 5445 = 379 (P)
(68) 182 * 32 = 5824 - 165 * 37 = 6105 = - 281 (P)
(69) 182 * 32 = 5824 - 165 * 41 = 6765 = - 941 (P)
(70)182 * 34= 6188 - 165 * 33 = 5445 = 743 (P)
(71)182 * 34= 6188 - 165 * 37 = 6105 = 83 (P)
(72)182 * 34= 6188 - 165 * 41 = 6765 = - 577 (P)
(73)182 * 34= 6188 - 165 * 43 = 7095 = - 907 (P)
(74) 182 * 37 = 6734 - 165 * 41 = 6765 = - 31 (P)
(75) 182 * 37 = 6734 - 165 * 43 = 7095 = - 361 ( = 19 * 19 )
(76) 182 * 37 = 6734 - 165 * 45 = 7425 = - 691 (P)
(77) 182 * 38 = 6916 - 165 * 37 = 6105 = 811 (P)
(78) 182 * 38 = 6916 - 165 * 41 = 6765 = 151 (P)
(79) 182 * 38 = 6916 - 165 * 43 = 7095 = - 179 (P)
(80) 182 * 38 = 6916 - 165 * 45 = 7425 = - 509 (P)
(81) 182 * 38 = 6916 - 165 * 47 = 7755 = - 839 (P)
(82) 182 * 41 = 7462 - 165 * 43 = 7095 = 367 (P)
(83) 182 * 41 = 7462 - 165 * 45 = 7425 = 37 (P)
(84) 182 * 41 = 7462 - 165 * 47 = 7755 = - 293 (P)
(85) 182 * 41 = 7462 - 165 * 51 = 8415 = - 953 (P)
(86) 182 * 43 = 7826 - 165 * 45 = 7425 = 401 (P)
(87) 182 * 43 = 7826 - 165 * 47 = 7755 = - 71 (P)
(88) 182 * 43 = 7826 - 165 * 51 = 8415 = - 589 ( = 19 * 31 )
(89) 182 * 43 = 7826 - 165 * 53 = 8745 = - 919 (P)
(90) 182 * 46 = 8372 - 165 * 45 = 7425 = 947 (P)
(91) 182 * 46 = 8372 - 165 * 47 = 7755 = 617 (P)
(92) 182 * 46 = 8372 - 165 * 51 = 8415 = -43 (P)
(93) 182 * 46 = 8372 - 165 * 53 = 8745 = - 373 (P)
(94) 182 * 46 = 8372 - 165 * 55 = 9075 = - 703 ( = 19 * 37 )
(95) 182 * 47 = 8554 - 165 * 51 = 8415 = 139 (P)
(96) 182 * 47 = 8554 - 165 * 53 = 8745 = - 191 (P)
(97) 182 * 47 = 8554 - 165 * 55 = 9075 = - 521 (P)
(98) 182 * 47 = 8554 - 165 * 57 = 9405 = - 851 ( = 23 * 37 )
(99) 182 * 49 = 8918 - 165 * 51 = 8415 = 503 (P)
(100)182 * 49 = 8918 - 165 * 53 = 8745 = 173 (P)
(101)182 * 49 = 8918 - 165 * 55 = 9075 = - 157(P)
(102)182 * 49 = 8918 - 165 * 57 = 9405 = - 487 (P)
(103)182 * 49 = 8918 - 165 * 59 = 9735 = - 817 ( = 19 * 43 )
( To be continued )
It should be better to list the real values of their difference
instead of the absolute values of their difference .
Last edited by mr.wong (2016-12-11 00:28:23)
Offline
( Continued from # 17 )
(104) 182 * 52 = 9464 165 * 53 = 8745 719 (P)
(105) 182 * 52 = 9464 165 * 55 = 9075 389 (P)
(106) 182 * 52 = 9464 165 * 57 = 9405 59 (P)
(107) 182 * 52 = 9464 165 * 59 = 9735 - 271 (P)
(108) 182 * 52 = 9464 165 * 61 = 10065 -601(P)
(109) 182 * 56 = 10192 165 * 57 = 9405 787 (P)
(110) 182 * 56 = 10192 165 * 59 = 9735 457 (P)
(111) 182 * 56 = 10192 165 * 61 = 10065 127 (P)
(112) 182 * 56 = 10192 165 * 67 = 11055 - 863 (P)
(113) 182 * 58 = 10556 165 * 59 = 9735 821 (P)
(114) 182 * 58 = 10556 165 * 61 = 10065 491 (P)
(115) 182 * 58 = 10556 165 * 67 = 11055 - 499 (P)
(116) 182 * 58 = 10556 165 * 69 = 11385 - 829 (P)
(117) 182 * 59 = 10738 165 * 61 = 10065 673 (P)
(118) 182 * 59 = 10738 165 * 67 = 11055 - 317 (P)
(119) 182 * 59 = 10738 165 * 69 = 11385 - 647 (P)
(120) 182 * 59 = 10738 165 * 71 = 11715 - 977 (P)
(121) 182 * 61 = 11102 165 * 67 = 11055 47 (P)
(122) 182 * 61 = 11102 165 * 69 = 11385 - 283 (P)
(123) 182 * 61 = 11102 165 * 71 = 11715 - 613 (P)
(124) 182 * 61 = 11102 165 * 73 = 12045 - 943 ( = 23 * 41 )
(125) 182 * 62 = 11284 165 * 67 = 11055 229 (P)
(126) 182 * 62 = 11284 165 * 69 = 11385 - 101 (P)
(127) 182 * 62 = 11284 165 * 71 = 11715 - 431(P)
(128) 182 * 62 = 11284 165 * 73 = 12045 - 761(P)
(129) 182 * 64 = 11648 165 * 67 = 11055 593 (P)
(130) 182 * 64 = 11648 165 * 69 = 11385 263(P)
(131) 182 * 64 = 11648 165 * 71 = 11715 - 67 (P)
(132) 182 * 64 = 11648 165 * 73 = 12045 - 397 (P)
(133) 182 * 64 = 11648 165 * 75 = 12375 - 727 (P)
(134) 182 * 67 = 12194 165 * 69 = 11385 809 (P)
(135) 182 * 67 = 12194 165 * 71 = 11715 479 ( P)
(136) 182 * 67 = 12194 165 * 73 = 12045 149 (P)
(137) 182 * 67 = 12194 165 * 75 = 12375 - 181 (P)
(138) 182 * 67 = 12194 165 * 79 = 13035 - 841 (= 29 * 29 )
(139) 182 * 68 = 12376 165 * 69 = 11385 991 (P)
(140) 182 * 68 = 12376 165 * 71 = 11715 661 (P)
(141) 182 * 68 = 12376 165 * 73 = 12045 331 (P)
(142) 182 * 68 = 12376 165 * 75 = 12375 1
(143) 182 * 68 = 12376 165 * 79 = 13035 - 659 (P)
(144) 182 * 68 = 12376 165 * 81 = 13365 - 989 (=23*43)
(145) 182 * 71 = 12922 165 * 73 = 12045 877 (P)
(146) 182 * 71 = 12922 165 * 75 = 12375 547 (P)
(147) 182 * 71 = 12922 165 * 79 = 13035 - 113 (P)
(148) 182 * 71 = 12922 165 * 81 = 13365 - 443 (P)
(149 ) 182 * 71 = 12922 165 * 83 = 13695 - 773 (P)
(150) 182 * 73 = 13286 165 * 75 = 12375 911 (P)
(151) 182 * 73 = 13286 165 * 79 = 13035 251 (P)
(152) 182 * 73 = 13286 165 * 81 = 13365 - 79 (P)
(153) 182 * 73 = 13286 165 * 83 = 13695 - 409 (P)
(154) 182 * 73 = 13286 165* 85 = 14025 - 739 (P)
(155) 182 * 74 = 13468 165 * 79 = 13035 433 (P)
(156) 182 * 74 = 13468 165 * 81 = 13365 103 (P)
(157) 182 * 74 = 13468 165 * 83 = 13695 - 227 (P)
(158) 182 * 74 = 13468 165 * 85 = 14025 - 557 (P)
(159) 182 * 74 = 13468 165 * 87 = 14355 - 887 (P)
(160) 182 * 76 = 13832 165 * 79 = 13035 797 (P)
(161) 182 * 76 = 13832 165 * 81 = 13365 467 (P)
(162) 182 * 76 = 13832 165 * 83 = 13695 137 (P)
(163) 182 * 76 = 13832 165 * 85 = 14025 - 193 (P)
(164) 182 * 76 = 13832 165 * 87 = 14355 - 523 (P)
(165) 182 * 76 = 13832 165 * 89 = 14685 - 853 (P)
(166) 182 * 79 = 14378 165 * 83 = 13695 683 (P)
(167) 182 * 79 = 14378 165 * 85 = 14025 353 (P)
(168) 182 * 79 = 14378 165 * 87 = 14355 23 (P)
(169) 182 * 79 = 14378 165 * 89 = 14685 - 307 (P)
(170) 182 * 79 = 14378 165 * 93 = 15345 - 967 (P)
(171) 182 * 82 = 14924 165 * 85 = 14025 899 (= 29 * 31)
(172) 182 * 82 = 14924 165 * 87 = 14355 569 (P)
(173) 182 * 82 = 14924 165 * 89 = 14685 239 (P)
(174) 182 * 82 = 14924 165 * 93 = 15345 - 421(P)
(175) 182 * 82 = 14924 165 * 95 = 15675 - 751(P)
(176) 182 * 83 = 15106 165 * 87 = 14355 751 ( Re)
(177) 182 * 83 = 15106 165 * 89 = 14685 421
(178) 182 * 83 = 15106 165 * 93 = 15345 - 239
(179) 182 * 83 = 15106 165 * 95 = 15675 - 569
(180) 182 * 83 = 15106 165 * 97 = 16005 - 899 (= 29 * 31 )
(181) 182 * 86 = 15652 165 * 89 = 14685 967
(182) 182 * 86 = 15652 165 * 93 = 15345 307
(183) 182 * 86 = 15652 165 * 95 = 15675 - 23
(184) 182 * 86 = 15652 165 * 97 = 16005 - 353
(185) 182 * 86 = 15652 165 * 99 = 16335 - 683
(186) 182 * 89 = 16198 165 * 93 = 15345 853
(187) 182 * 89 = 16198 165 * 95 = 15675 523
(188) 182 * 89 = 16198 165 * 97 = 16005 193
(189) 182 * 89 = 16198 165 * 99 = 16335 - 137
(190) 182 * 89 = 16198 165 * 101 = 16665 - 467
(191) 182 * 89 = 16198 165 * 103 = 16995 - 797
(192) 182 * 91 = 16562 165 * 95 = 15675 887
(193) 182 * 91 = 16562 165 * 97 = 16005 557
(194) 182 * 91 = 16562 165 * 99 = 16335 227
(195) 182 * 91 = 16562 165 * 101 = 16665 - 103
(196) 182 * 91 = 16562 165 * 103 = 16995 - 433
(197) 182 * 92 = 16744 165 * 97 = 16005 739
(198) 182 * 92 = 16744 165 * 99 = 16335 409
(199) 182 * 92 = 16744 165 * 101 = 16665 79
(200) 182 * 92 = 16744 165 * 103 = 16995 - 251
(201) 182 * 92 = 16744 165 * 107 = 17655 - 911
(202) 182 * 94 = 17108 165 * 99 = 16335 773
(203) 182 * 94 = 17108 165 * 101 = 16665 443
(204) 182 * 94 = 17108 165 * 103 = 16995 113
(205) 182 * 94 = 17108 165 * 107 = 17655 - 547
(206) 182 * 94 = 17108 165 * 109 = 17985 - 877
(207) 182 * 97 = 17654 165 * 101 = 16665 989 ( = 23 * 43 )
(208) 182 * 97 = 17654 165 * 103 = 16995 659
(209) 182 * 97 = 17654 165 * 107 = 17655 - 1
(210) 182 * 97 = 17654 165 * 109 = 17985 - 331
(211) 182 * 97 = 17654 165 * 111 = 18315 - 661
(212) 182 * 97 = 17654 165 * 113 = 18645 - 991
(213) 182 * 98 = 17836 165 * 103 = 16995 841 ( = 29 * 29 )
(214) 182 * 98 = 17836 165 * 107 = 17655 181
(215) 182 * 98 = 17836 165 * 109 = 17985 - 149
(216) 182 * 98 = 17836 165 * 111 = 18315 - 479
(217) 182 * 98 = 17836 165 * 113 = 18645 - 809
(218) 182 * 101 = 18382 165 * 107 = 17655 727
(219) 182 * 101 = 18382 165 * 109 = 17985 397
(220) 182 * 101 = 18382 165 * 111 = 18315 67
(221) 182 * 101 = 18382 165 * 113 = 18645 - 263
(222) 182 * 101 = 18382 165 * 115 = 18975 - 593
The prime 751 obtained in (175 ) repeated in ( 176 ) , but the former
= 165 * 95 - 182 * 82 and the latter = 182 * 83 - 165 * 87 , while
165 * 95 - 182 * 82 = 182 * 83 - 165 * 87
<=> 165 * 95 + 165 * 87 = 182 * 83 + 182 * 82
<=> 165 * ( 95 + 87 ) = 182 * ( 83 + 82 )
<=> 165 * 182 = 182 * 165 .
It is quite strange that then the prime 421 obtained in (174 ) was
repeated in ( 177 ) by * -1 , and so on for every nos . obtained before , i.e. ,
the list is symmetric ( for absolute value ) upwards at (175) and downwards at (176) .
( It seems that if the list is not symmetric at certain place then there must
be something wrong . )
Last edited by mr.wong (2016-12-09 15:14:14)
Offline
Since the nos. generated are found to be symmetric from (175) upwards with (176) downwards . It can be induced that the value in ( r ) is
identical with that in (351 - r ) by * ( -1 ) for r ≧ 7 . E.g. the values obtained in
(173) is 239 and (178) - 239 .
Similarly we can predict that the value obtained in (7) , i.e.
182 * 1 - 165 * 1 = 17 will occur in ( 351 - 7 ) = ( 344 ) as - 17 .
Let the expression in (344) be expressed as 182 i - 165j = -17
where i is relatively prime with 165 * j while j is relatively prime
with 182 * i .
Since 182i - 165j = -17 ⇒ 165 j - 182i = 182 - 165
⇒ 165 j + 165 = 182 i + 182
⇒ 165 ( j + 1) = 182 ( i + 1)
A solution for the equation is j+1 = i+1 = 0 ⇒ j = -1 and i = -1 ,
i.e. the expression in (7) : 182 * 1 - 165 * 1 = 17 .
Another solution is i + 1 = 165 and j + 1 = 182 ,
⇒ i = 164 and j = 181 .
Thus the expression in (344) may be expressed as
182 * 164 - 165 * 181= 29848 - 29865= -17
A third solution for the equation may be i + 1 = 2 * 165 = 330
and j+1 = 2 * 182 = 364 ⇒ i = 329 and j = 363 .
i.e. 182 * 329 = 59878 - 165 * 363 = 59895 = -17 .
Last edited by mr.wong (2016-12-09 15:34:15)
Offline
Composite no. < 1000 containing at least 1 prime factor from 17 to 31 .(The other prime factor may > 31 , but will < 1000 / 17 = 58 . 8 , i.e. 53 ) ( 27 ones ) :
( A ) Arranged in products of prime factors
* | 17 | 19 | 23 | 29 | 31 || 37 | 41 | 43 | 47 | 53 |
17 | 289 | 323 | 391 | 493 | 527 || 629 | 697 | 731 | 799 | 901 |
19 | / | 361 | 437 | 551 | 589 || 703 | 779 | 817 | 893 | / |
23 | / | / | 529 | 667 | 713 || 851 | 943 | 989 | / | / |
29 | / | / | / | 841 | 899 || / | / | / | / | / |
31 | / | / | / | / | 961 || / | / | / | / | / |
( B ) Rearranged in ascending order
2xx : 289
3xx : 323 , 361 , 391
4xx : 437 , 493
5xx : 527 , 529 , 551 , 589
6xx : 629 , 667 , 697
7xx : 703 , 713 , 731 , 779 , 799
8xx : 817 , 841 , 851 , 893 , 899
9xx : 901 , 943 , 961 , 989
Offline
Numbers with value < 1000 generated mainly from set of primes < 17 .
( This post will replace # 17 and # 18 )
Let S = { 2 , 3 , 5 , 7 , 11 , 13 } and take A = { 2 , 7 , 13 } and B = { 3 , 5 , 11 } , thus π A = 182 and πB = 165 while L1 = 17 ^2 = 289 .
Multiply 182 by i , and 165 by j where i and j are ± ve integers ( excluding 0 ) . If i is relatively prime with 165 and j , while j is relatively prime with 182 and i , then 182 * i is relatively prime with 165 * j .
Let n be 182 * i - 165 * j for various values of i and j , clearly n is not divisible by primes < 17 , nor every prime factors of i and j .
If n generated < 289 , then n = 1 or is a prime .
If n > 289 , then usually we have to check further the divisibility of n by
consecutive primes from 17 up to the prime just < √n ( may be by actual division ) , excluding those prime factors of i or j . If every such prime does not divide n , then n is a prime .
( The primality of n may also be checked by comparing n with the composite no. list in the tables at # 20 , if the absolute value of n is not one of them , then n is a prime . )
In the following we shall list all such n's with absolute value < 1000 .
n = 182 * i - 165 * j
[ 182 * i + 165 * j will be expressed as 182 * i - 165 *(- j ) ]
(1) 182 * 1 = 182 - 165 * -3 = - 495 d = 677 (P)
(2) 182 * 1 = 182 - 165 * -1 = -165 d = 347 (P)
(3) 182 * 1 = 182 - 165 * 1 = 165 d = 17 (P)
(4) 182 * 1 = 182 - 165 * 3 = 495 d = -313 ( P )
(5) 182 * 1 = 182 - 165 * 5 = 825 d = - 643 (P)
(6) 182 * 1 = 182 - 165 * -3 = - 495 d = 859 (P)
(7) 182 * 2 = 364 - 165 * -1 = - 165 d = 529 ( = 23 * 23 )
(8) 182 * 2 = 364 - 165 * 1 = 165 d = 199 (P)
(9) 182 * 2 = 364 - 165 * 3 = 495 d = -131 (P)
(10) 182 * 2 = 364 - 165 * 5 = 825 d = -461 (P)
(11) 182 * 4 = 728 - 165 * -1 = -165 d = 893 ( = 19 * 47 )
(12) 182 * 4 = 728 - 165 * 1 = 165 d = 563 ( P)
(13) 182 * 4 = 728 - 165 * 3 = 495 d = 233 ( P )
(14) 182 * 4 = 728 - 165 * 5 = 825 d = -97 ( P )
(15) 182 * 4 = 728 - 165 * 9 = 1485 d = - 757 ( P )
(16) 182 * 7 = 1274 - 165 * 3 = 495 d = 779 ( = 19 * 41)
(17) 182 * 7 = 1274 - 165 * 5 = 825 d = 449 ( P )
(18) 182 * 7 = 1274 - 165 * 9 = 1485 d = - 211( P )
(19) 182 * 7 = 1274 - 165 *11 = 1815 d = - 541(P)
(20) 182 * 8 = 1456 - 165 * 3 = 495 d = 961( = 31 * 31)
(21) 182 * 8 = 1456 - 165 * 5 = 825 d = 631 ( P )
(22) 182 * 8 = 1456 - 165 * 9 = 1485 d = - 29 ( P)
(23) 182 * 8 = 1456 - 165 *11 = 1815 d = - 359 (P)
(24) 182 * 13 = 2366 - 165 * 9 = 1485 d = 881 (P)
(25) 182 * 13 = 2366 - 165 *11 = 1815 d = 551( = 19 * 29)
(26) 182 * 13 = 2366 - 165 * 15 = 2475 d = - 109 (P)
(27) 182 * 13 = 2366 - 165 * 17 = 2805 d = - 439(P)
(28) 182 * 13 = 2366 -165 * 19 = 3135 d = - 769(P)
(29) 182 * 14 = 2548 -165 *11 = 1815 d = 733(P)
(30) 182 * 14 = 2548 - 165 * 15 = 2475 d = - 73(P)
(31) 182 * 14 = 2548 - 165 * 17 = 2805 d = - 257(P)
(32) 182 * 14 = 2548 - 165 * 19 = 3135 d = - 587(P)
(33) 182 * 16 = 2912 - 165 * 15 = 2475 d = 437(=19 * 23)
(34) 182 * 16 = 2912 - 165 *17 = 2805 d = 107(P)
(35) 182 * 16 = 2912 - 165 * 19 = 3135 d = - 223(P)
(36) 182 * 16 = 2912 - 165 * 23 = 3795 d = - 883(P)
(37) 182 * 17 = 3094 - 165 * 15 = 2475 d = 619(P)
(38) 182 * 17 = 3094 -165 * 19 = 3135 d = - 41(P)
(39) 182 * 17 = 3094 - 165 * 23 = 3795 d =- 701(P)
(40) 182 * 19 = 3458 - 165 * 15 = 2475 d = 983 (P)
(41) 182 * 19 = 3458 -165 *17 = 2805 d = 653(P)
(42) 182 * 19 = 3458 - 165 * 23 = 3795 d = - 337(P)
(43) 182 * 19 = 3458 - 165 * 25 = 4125 d = - 667 ( = 23 * 29)
(44) 182 * 19 = 3458 - 165 * 27 = 4455 d = - 997 (P)
(45) 182 * 23 = 4186 - 165 * 25 = 4125 d = 61 (P)
(46) 182 * 23 = 4186 - 165 * 27 = 4455 d = - 269(P)
(47) 182 * 23 = 4186 - 165 *29 = 4785 d = - 599(P)
(48) 182 * 23 = 4186 - 165 * 31 = 5115 d = - 929 (P)
(49) 182 * 26 = 4732 - 165 * 23 = 3795 d = 937(P)
(50) 182 * 26 = 4732 - 165 * 25 = 4125 d = 607(P)
(51) 182 * 26 = 4732 - 165 * 27 = 4455 d = 277(P)
(52) 182 * 26 = 4732 - 165 * 29 = 4785 d = - 53(P)
(53) 182 * 26 = 4732 - 165 * 31 = 5115 d = - 383(P)
(54) 182 * 26 = 4732 - 165 * 33 = 5445 d = - 713 ( = 23 * 31 )
(55) 182 * 28 = 5096 - 165 * 25 = 4125 d = 971 (P)
(56) 182 * 28 = 5096 -165 * 27 = 4455 d = 641 (P)
(57) 182 * 28 = 5096 - 165 * 29 = 4785 d = 311 (P)
(58)182 * 28 = 5096 - 165 * 31 = 5115 d = - 19 (P)
(59)182 * 28 = 5096 - 165 * 33 = 5445 d = - 349 (P)
(60) 182 * 29 = 5278 - 165 * 27 = 4455 d = 823 (P)
(61) 182 * 29 = 5278 -165 * 31 = 5115 d =163 (P)
(62)182 * 29 = 5278 -165 * 33 = 5445 d = - 167 (P)
(63)182 * 29 = 5278 - 165 * 37 = 6105 d = - 827 (P)
(64) 182 * 31 = 5642 - 165 * 29 = 4785 d = 857 (P)
(65) 182 * 31 = 5642 - 165 * 33 = 5445 d = 197 (P)
(66) 182 * 31 = 5642 - 165 * 37 = 6105 d = - 463 (P)
(67) 182 * 32 = 5824 - 165 * 31 = 5115 d = 709 (P)
(68) 182 * 32 = 5824 - 165 * 33 = 5445 d = 379 (P)
(69) 182 * 32 = 5824 - 165 * 37 = 6105 d = - 281 (P)
(70) 182 * 32 = 5824 - 165 *41 = 6765 d = - 941 (P)
(71)182 * 34= 6188 - 165 * 33 = 5445 d = 743 (P)
(72)182 * 34= 6188 - 165 * 37 = 6105 d = 83 (P)
(73)182 * 34= 6188 - 165 * 41 = 6765 d = - 577 (P)
(74)182 * 34= 6188 - 165 * 43 = 7095 d = - 907 (P)
(75) 182 * 37 = 6734 - 165 * 41 = 6765 d = - 31 (P)
(76) 182 * 37 = 6734 - 165 * 43 = 7095 d = - 361 ( = 19 * 19 )
(77) 182 * 37 = 6734 - 165 * 45 = 7425 d = - 691 (P)
(78) 182 * 38 = 6916 - 165 * 37 = 6105 d = 811 (P)
(79) 182 * 38 = 6916 - 165 * 41 = 6765 d = 151 (P)
(80) 182 * 38 = 6916 - 165 * 43 = 7095 d = - 179 (P)
(81) 182 * 38 = 6916 - 165 * 45 = 7425 d = - 509 (P)
(82) 182 * 38 = 6916 - 165 * 47 = 7755 d = - 839 (P)
(83) 182 * 41 = 7462 - 165 * 43 = 7095 d = 367 (P)
(84) 182 * 41 = 7462 - 165 * 45 = 7425 d = 37 (P)
(85) 182 * 41 = 7462 - 165 * 47 = 7755 d = - 293 (P)
(86) 182 * 41 = 7462 - 165 * 51 = 8415 d = - 953 (P)
(87) 182 * 43 = 7826 - 165 * 45 = 7425 d = 401 (P)
(88) 182 * 43 = 7826 - 165 * 47 = 7755 d = 71 (P)
(89) 182 * 43 = 7826 - 165 * 51 = 8415 d = - 589 ( = 19 * 31 )
(90) 182 * 43 = 7826 -165 * 53 = 8745 d = - 919 (P)
(91) 182 * 46 = 8372 -165 * 45 = 7425 d = 947 (P)
(92) 182 * 46 = 8372 -165 * 47 = 7755 d = 617 (P)
(93) 182 * 46 = 8372 - 165 * 51 = 8415 d = - 43 (P)
(94) 182 * 46 = 8372 - 165 * 53 = 8745 d = - 373 (P)
(95) 182 * 46 = 8372 - 165 * 55 = 9075 d = - 703 ( = 19 * 37 )
(96) 182 * 47 = 8554 - 165 * 51 = 8415 d = 139 (P)
(97) 182 * 47 = 8554 - 165 * 53 = 8745 d = - 191 (P)
(98) 182 * 47 = 8554 - 165 * 55 = 9075 d = - 521 (P)
(99) 182 * 47 = 8554 - 165 * 57 = 9405 d = - 851 ( = 23 * 37 )
(100) 182 * 49 = 8918 - 165 * 51 = 8415 d = 503 (P)
(101)182 * 49 = 8918 - 165 * 53 = 8745 d = 173 (P)
(102)182 * 49 = 8918 - 165 * 55 = 9075 d = - 157(P)
(103)182 * 49 = 8918 - 165 * 57 = 9405 d = - 487 (P)
(104)182 * 49 = 8918 - 165 * 59 = 9735 d = - 817 ( = 19 * 43 )
(105) 182 * 52 = 9464 - 165 * 53 = 8745 d = 719 (P)
(106) 182 * 52 = 9464 - 165 * 55 = 9075 d = 389 (P)
(107) 182 * 52 = 9464 - 165 * 57 = 9405 d = 59 (P)
(108) 182 * 52 = 9464 - 165 * 59 = 9735 d = - 271 (P)
(109) 182 * 52 = 9464 - 165 * 61 = 10065 d = -601(P)
(110) 182 * 53 = 9646 - 165 * 53 = 8745 d = 901 ( = 17 * 53)
(111) 182 * 53 = 9646 - 165 * 55 = 9075 d = 571 (P)
(112) 182 * 53 = 9646 - 165 * 57 = 9405 d = 241 (P)
(113) 182 * 53 = 9646 - 165 * 59 = 9735 d = - 89 (P)
(114) 182 * 53 = 9646 - 165 * 61 = 10065 d = - 419 (P)
(115) 182 * 56 = 10192 - 165 * 57 = 9405 d = 787 (P)
(116) 182 * 56 = 10192 - 165 * 59 = 9735 d = 457 (P)
(117) 182 * 56 = 10192 - 165 * 61 = 10065 d = 127 (P)
(118) 182 * 56 = 10192 - 165 * 67 = 11055 d = - 863 (P)
(119) 182 * 58 = 10556 - 165 * 59 = 9735 d = 821 (P)
(120) 182 * 58 = 10556 - 165 * 61 = 10065 d = 491 (P)
(121) 182 * 58 = 10556 - 165 * 67 = 11055 d = - 499 (P)
(122) 182 * 58 = 10556 - 165 * 69 = 11385 d = - 829 (P)
(123) 182 * 59 = 10738 - 165 * 61 = 10065 d = 673 (P)
(124) 182 * 59 = 10738 - 165 * 67 = 11055 d = - 317 (P)
(125) 182 * 59 = 10738 - 165 * 69 = 11385 d = - 647 (P)
(126) 182 * 59 = 10738 - 165 * 71 = 11715 d = - 977 (P)
(127) 182 * 61 = 11102 - 165 * 67 = 11055 d = 47 (P)
(128) 182 * 61 = 11102 - 165 * 69 = 11385 d = - 283 (P)
(129) 182 * 61 = 11102 - 165 * 71 = 11715 d = - 613 (P)
(130) 182 * 61 = 11102 - 165 * 73 = 12045 d = - 943 ( = 23 * 41 )
(131) 182 * 62 = 11284 - 165 * 67 = 11055 d = 229 (P)
(132) 182 * 62 = 11284 - 165 * 69 = 11385 d = - 101 (P)
(133) 182 * 62 = 11284 - 165 * 71 = 11715 d = - 431(P)
(134) 182 * 62 = 11284 - 165 * 73 = 12045 d = - 761(P)
(135) 182 * 64 = 11648 - 165 * 67 = 11055 d = 593 (P)
(136) 182 * 64 = 11648 - 165 * 69 = 11385 d = 263(P)
(137) 182 * 64 = 11648 - 165 * 71 = 11715 d = - 67 (P)
(138) 182 * 64 = 11648 - 165 * 73 = 12045 d = - 397 (P)
(139) 182 * 64 = 11648 - 165 * 75 = 12375 d = - 727 (P)
(140) 182 * 67 = 12194 - 165 * 69 = 11385 d = 809 (P)
(141) 182 * 67 = 12194 - 165 * 71 = 11715 d = 479 ( P)
(142) 182 * 67 = 12194 - 165 * 73 = 12045 d = 149 (P)
(143) 182 * 67 = 12194 - 165 * 75 = 12375 d = - 181 (P)
(144) 182 * 67 = 12194 - 165 * 79 = 13035 d = - 841 (= 29 * 29 )
(145) 182 * 68 = 12376 - 165 * 69 = 11385 d = 991 (P)
(146) 182 * 68 = 12376 - 165 * 71 = 11715 d = 661 (P)
(147) 182 * 68 = 12376 - 165 * 73 = 12045 d = 331 (P)
(148) 182 * 68 = 12376 - 165 * 75 = 12375 d = 1
(149) 182 * 68 = 12376 - 165 * 79 = 13035 d = - 659 (P)
(150) 182 * 68 = 12376 - 165 * 81 = 13365 d = - 989 (= 23*43)
(151) 182 * 71 = 12922 - 165 * 73 = 12045 d = 877 (P)
(152) 182 * 71 = 12922 - 165 * 75 = 12375 d = 547 (P)
(153) 182 * 71 = 12922 - 165 * 79 = 13035 d = - 113 (P)
(154) 182 * 71 = 12922 - 165 * 81 = 13365 d = - 443 (P)
(155 ) 182 * 71 = 12922 - 165 * 83 = 13695 d = - 773 (P)
(156) 182 * 73 = 13286 - 165 * 75 = 12375 d = 911 (P)
(157) 182 * 73 = 13286 - 165 * 79 = 13035 d = 251 (P)
(158) 182 * 73 = 13286 - 165 * 81 = 13365 d = - 79 (P)
(159) 182 * 73 = 13286 - 165 * 83 = 13695 d = - 409 (P)
(160) 182 * 73 = 13286 - 165* 85 = 14025 d = - 739 (P)
(161) 182 * 74 = 13468 - 165 * 79 = 13035 d = 433 (P)
(162) 182 * 74 = 13468 - 165 * 81 = 13365 d = 103 (P)
(163) 182 * 74 = 13468 - 165 * 83 = 13695 d = - 227 (P)
(164) 182 * 74 = 13468 - 165 * 85 = 14025 d = - 557 (P)
(165) 182 * 74 = 13468 - 165 * 87 = 14355 d = - 887 (P)
(166) 182 * 76 = 13832 - 165 * 79 = 13035 d = 797 (P)
(167) 182 * 76 = 13832 - 165 * 81 = 13365 d = 467 (P)
(168) 182 * 76 = 13832 - 165 * 83 = 13695 d = 137 (P)
(169) 182 * 76 = 13832 - 165 * 85 = 14025 d = - 193 (P)
(170) 182 * 76 = 13832 - 165 * 87 = 14355 d = - 523 (P)
(171) 182 * 76 = 13832 - 165 * 89 = 14685 d = - 853 (P)
(172) 182 * 79 = 14378 - 165 * 83 = 13695 d = 683 (P)
(173) 182 * 79 = 14378 - 165 * 85 = 14025 d = 353 (P)
(174) 182 * 79 = 14378 - 165 * 87 = 14355 d = 23 (P)
(175) 182 * 79 = 14378 - 165 * 89 = 14685 d = - 307 (P)
(176) 182 * 79 = 14378 - 165 * 93 = 15345 d = - 967 (P)
(177) 182 * 82 = 14924 - 165 * 85 = 14025 d = 899 (= 29 * 31)
(178) 182 * 82 = 14924 - 165 * 87 = 14355 d = 569 (P)
(179) 182 * 82 = 14924 - 165 * 89 = 14685 d = 239 (P)
(180) 182 * 82 = 14924 - 165 * 93 = 15345 d = - 421(P)
(181) 182 * 82 = 14924 - 165 * 95 = 15675 d = - 751(P)
---------------------------------------------------------------------------------
(182) 182 * 83 = 15106 - 165 * 87 = 14355 d = 751 ( P)
(183) 182 * 83 = 15106 - 165 * 89 = 14685 d = 421 (P)
(184) 182 * 83 = 15106 - 165 * 93 = 15345 d = - 239 (P)
(185) 182 * 83 = 15106 - 165 * 95 = 15675 d = - 569 (P)
(186) 182 * 83 = 15106 - 165 * 97 = 16005 d = - 899 (= 29 * 31 )
(187) 182 * 86 = 15652 - 165 * 89 = 14685 d = 967 (P)
(188) 182 * 86 = 15652 - 165 * 93 = 15345 d = 307 (P)
(189) 182 * 86 = 15652 - 165 * 95 = 15675 d = - 23 (P)
(190) 182 * 86 = 15652 - 165 * 97 = 16005 d = - 353 (P)
(191) ................
The absolute value of n's obtained from item (1) to item (181) had covered
1 and every prime from 17 onwards to 997 (the largest prime < 1000 ) ,
together with all the composite no . < 1000 consisting of no prime factor
from 2 to 13 and contain at least 1 prime factor from 17 to 31 .
Beginning from item (182) its value = value of item (181) * ( -1) .
In general the value of item (r) = value of item (363 - r) *( -1 ).
Thus the value of item (360) will be value of item (3 ) * -1 , i.e. -17 .
Similarly value of last item (362) will be 677 * -1 = -677 .
Thus the absolute values from (1) to ( 181) will be symmetric ( reflective )with the absolute values from ( 182) to (362) .
Moreover , if the expression at item (r) is 182 * i - 165 * j , then the expression at item (363 - r ) will be 182 * ( 165 - i ) - 165 * ( 182 - j ) .
= 182 * 165 - 182 * i - 165 * 182 + 165 * j
= 165 * j - 182 * i
= [ (182 * i - 165 * j ) ] *( -1)
Since the expression of item ( 1 ) = 182 * 1 - 165 * -3 = 677 , then the expression of item ( 362 ) will be 182 * 164 - 165 * 185 ,thus the expression of item (363 ) will be
182 * 166 = 30212 - 165 * 179 = 29535 , getting d = 677 = value of item (1).
For item (364 ) : 182 *166 = 30212 - 165 * 181 = 29865 , getting d = 347 = value of item (2) .
Thus the values of the items will be from (1) .... to (181) ,
(182) , then .... to (362) , then return to (1) , (2) .... and form a cycle .
Offline
To generate primes from sets with various basic primes
[ 1 ]
Numbers with value < 100 generated mainly from set of { 2 , 3 }
Let S = { 2 , 3 } and take A = { 3 } and B = { 2 } ,
thus π A = 3 and πB = 2 , while L = 5 ^2 = 25 .
To generate n = 3 * i + 2 * j for n < 100 .
(1) 3 * 1 = 3 + 2 * -1 = -2 , s = 1
(2) 3 * 1 = 3 + 2 * 1 = 2 , s = 5 (P)
(3) 3 * 1 = 3 + 2 * 2 = 4 , s = 7 (P)
(4) 3 * 1 = 3 + 2 * 4 = 8 , s = 11 (P)
(5) 3 * 1 = 3 + 2 * 5 = 10 , s = 13 (P)
(6) 3 * 1 = 3 + 2 * 7 = 14 , s = 17 (P)
(7) 3 * 1 = 3 + 2 * 8 = 16 , s = 19 (P)
(8) 3 * 1 = 3 + 2 * 10 = 20 , s = 23 (P)
(9 ) 3 * 1 = 3 + 2 * 11 = 22 , s = 25 ( = 5 * 5 )
(10) 3 * 1 = 3 + 2 * 13 = 26 , s = 29 (P)
(11) 3 * 1 = 3 + 2 * 14 = 28 , s = 31 (P)
(12) 3 * 1 = 3 + 2 * 16 = 32 , s = 35 ( = 5 * 7 )
(13) 3 * 1 = 3 + 2 * 17 = 34 , s = 37 (P)
(14) 3 * 1 = 3 + 2 * 19 = 38 , s = 41 (P)
(15) 3 * 1 = 3 + 2 * 20 = 40 , s = 43 (P)
(16) 3 * 1 = 3 + 2 * 22 = 44 , s = 47 (P)
(17) 3 * 1 = 3 + 2 * 23 = 46 , s = 49 ( = 7 * 7 )
(18) 3 * 1 = 3 + 2 * 25 = 50 , s = 53 (P)
(19) 3 * 1 = 3 + 2 * 26 = 52 , s = 55 ( = 5 * 11 )
(20) 3 * 1 = 3 + 2 * 28 = 56 , s = 59 (P)
(21) 3 * 1 = 3 + 2 * 29 = 58 , s = 61 (P)
(22) 3 * 1 = 3 + 2 * 31 = 62 , s = 65 ( = 5 * 13 )
(23) 3 * 1 = 3 + 2 * 32 = 64 , s = 67 (P)
(24) 3 * 1 = 3 + 2 * 34 = 68 , s = 71 (P)
(25) 3 * 1 = 3 + 2 * 35 = 70 , s = 73 (P)
(26) 3 * 1 = 3 + 2 * 37 = 74 , s = 77 ( = 7 * 11 )
(27) 3 * 1 = 3 + 2 * 38 = 76 , s = 79 (P)
(28) 3 * 1 = 3 + 2 * 40 = 80 , s = 83 (P)
(29) 3 * 1 = 3 + 2 * 41 = 82 , s = 85 ( = 5 * 17 )
(30) 3 * 1 = 3 + 2 * 43 = 86 , s = 89 (P)
(31) 3 * 1 = 3 + 2 * 44 = 88 , s = 91 ( = 7 * 13 )
(32) 3 * 1 = 3 + 2 * 46 = 92 , s = 95 ( = 5 * 19 )
(33) 3 * 1 = 3 + 2 * 47 = 94 , s = 97 (P)
Offline
[ 2 ]
Numbers with value < 100 generated mainly from set of { 2 , 3 , 5}
Let S = { 2 , 3, 5 } and take A = { 2 , 3 } and B = { 5 } ,
thus π A = 6 and πB = 5 , while L = 7 ^2 = 49.
To generate n = 6 * i + 5 * j for n < 100 .
(1) 6 * 1 = 6 + 5 * -1 = -5 , s = 1
(2) 6 * 1 = 6 + 5 * 1 = 5 , s = 11 (P)
(3) 6 * 1 = 6 + 5 * 5 = 25 , s = 31 (P)
(4) 6 * 1 = 6 + 5 * 7 = 35 , s = 41 (P)
(5) 6 * 1 = 6 + 5 * 11 = 55 , s = 61 (P)
(6) 6 * 1 = 6 + 5 * 13 = 65 , s = 71 (P)
(7) 6 * 1 = 6 + 5 * 17 = 85 , s = 91 (= 7 * 13 )
(8) 6 * 2 = 12 + 5 * -1 = -5 , s = 7 (P)
(9) 6 * 2 = 12 + 5 * 1 = 5 , s = 17 (P)
(10) 6 * 2 = 12 + 5 * 5 = 25 , s = 37 (P)
(11) 6 * 2 = 12 + 5 * 7 = 35 , s = 47 (P)
(12) 6 * 2 = 12 + 5 * 11 = 55 , s = 67 (P)
(13) 6 * 2 = 12 + 5 * 13 = 65 , s = 77 ( = 7 * 11 )
(14) 6 * 2 = 12 + 5 * 17 = 85 , s = 97 (P)
(15) 6 * 3 = 18 + 5 * -1 = -5 , s = 13 (P)
(16) 6 * 3 = 18 + 5 * 1 = 5 , s = 23 (P)
(17) 6 * 3 = 18 + 5 * 5 = 25 , s = 43 (P)
(18 ) 6 * 3 = 18 + 5 * 7 = 35 , s = 53 (P)
(19) 6 * 3 = 18 + 5 * 11 = 55 , s = 73 (P)
(20) 6 * 3 = 18 + 5 * 13 = 65 , s = 83 (P)
(21) 6 * 4 = 24 + 5 * -1 = -5 , s = 19 (P)
(22) 6 * 4 = 24 + 5 * 1 = 5 , s = 29 (P)
(23) 6 * 4 = 24 + 5 * 5 = 25 , s = 49 ( = 7 * 7 )
(24) 6 * 4 = 24 + 5 * 7 = 35 , s = 59 (P)
(25) 6 * 4 = 24 + 5 * 11 = 55 , s = 79 (P)
(26) 6 * 4 = 24 + 5 * 13 = 65 , s = 89 (P)
Offline
[ 3 ]
Numbers with absolute value < 500 generated mainly from set of { 2 , 3 , 5, 7}
Let S = { 2 , 3 , 5 , 7 } and take A = { 3 , 5 } and B = { 2 , 7 } ,
thus π A = 15 and πB = 14 , while L = 11 ^2 = 121.
To generate n = 15 * i - 14 * j for | n |< 500
Here i and j are not necessarily coprime . But if i and j
are not relatively prime , then n will be composite except
when i = j = p ( a prime ) thus n = p .
(1) 15 * 1 = 15 - 14 * - 34 = - 476 , d = 491 (P)
(2) 15 * 1 = 15 - 14 * - 32 = - 448 , d = 463 (P)
(3) 15 * 1 = 15 - 14 * - 31 = - 434 , d = 449 (P)
(4) 15 * 1 = 15 - 14 * - 29 = - 406 , d = 421 (P)
(5) 15 * 1 = 15 - 14 * - 28 = - 392 , d = 407 ( = 11 *37)
(6) 15 * 1 = 15 - 14 * - 26 = - 364 , d = 379 (P)
(7) 15 * 1 = 15 - 14 * - 23 = - 322 , d = 337 (P)
(8) 15 * 1 = 15 - 14 * - 22 = - 308 , d = 323 ( = 17 *19)
(9) 15 * 1 = 15 - 14 * - 19 = - 266 , d = 281 (P)
(10)15 * 1 = 15 - 14 * - 17 = - 238 , d = 253 ( = 11 * 23)
(11) 15 * 1 = 15 - 14 * - 16 = - 224 , d = 239 (P)
(12) 15 * 1 = 15 - 14 * - 14 = - 196 , d = 211 (P)
(13) 15 * 1 = 15 - 14 * - 13 = - 182 , d = 197 (P)
(14) 15 * 1 = 15 - 14 * -11 = - 154 , d = 169 ( = 13*13)
(15) 15 * 1 = 15 - 14 * - 8 = - 112 , d = 127 (P)
(16) 15 * 1 = 15 - 14 * - 7 = - 98 , d = 113 (P)
(17) 15 * 1 = 15 - 14 * - 4 = - 56 , d = 71 (P)
(18) 15 * 1 = 15 - 14 * - 2 = - 28 , d = 43 (P)
(19) 15 * 1 = 15 - 14 * - 1 = - 14 , d = 29 (P)
( 20 ) 15 * 1 = 15 - 14 * 1 = 14 , d = 1
( 21 ) 15 * 1 = 15 - 14 * 2 = 28 , d = - 13 (P)
( 22 ) 15 * 1 = 15 - 14 * 4 = 56 , d = - 41 (P)
( 23) 15 * 1 = 15 - 14 * 7 = 98 , d = - 83 (P)
( 24) 15 * 1 = 15 - 14 * 8 = 112 , d = - 97 (P)
( 25) 15 * 1 = 15 - 14 * 11 = 154 , d = - 139 (P)
( 26 ) 15 * 1 = 15 - 14 * 13 = 182 , d = - 167 (P)
( 27) 15 * 1 = 15 - 14 * 14 = 196 , d = - 181 (P)
(28) 15 * 1 = 15 - 14 * 16 = 224 , d = - 209 ( = 11*19 )
(29) 15 * 1 = 15 - 14 * 17 = 238 , d = - 223 ( P)
(30) 15 * 1 = 15 - 14 * 19 = 266 , d = - 251 (P)
(31) 15 * 1 = 15 - 14 * 22 = 308 , d = - 293 (P)
(32) 15 * 1 = 15 - 14 * 23 = 322 , d = - 307 (P)
(33) 15 * 1 = 15 - 14 * 26 = 364 , d = - 349 (P)
(34) 15 * 1 = 15 - 14 * 28 = 392 , d = - 377 (= 13*29)
(35) 15 * 1 = 15 - 14 * 29 = 406 , d = - 391 (= 17*23)
(36) 15 * 1 = 15 - 14 * 31 = 434 , d = -419 (P)
(37) 15 * 1 = 15 - 14 * 32 = 448 , d = - 433 (P)
(38) 15 * 1 = 15 - 14 * 34 = 476 , d = - 461 (P)
(39) 15 * 3 = 45 - 14 * - 32 = - 448 , d = 493 (= 17*29)
(40) 15 * 3 = 45 - 14 * - 31 = - 434 , d = 479 (P)
(41) 15 * 3 = 45 - 14 * - 29 = - 406 , d = 451 (= 11*41)
(42) 15 * 3 = 45 - 14 * - 28 = - 392 , d = 437 ( =19*23)
(43) 15 * 3 = 45 - 14 * - 26 = - 364 , d = 409 (P)
(44) 15 * 3 = 45 - 14 * - 23 = - 322 , d = 367 (P)
(45) 15 * 3 = 45 - 14 * - 22 = - 308 , d = 353 (P)
(46) 15 * 3 = 45 - 14 * - 19 = - 266 , d = 311 (P)
(47) 15 * 3 = 45 - 14 * - 17 = - 238 , d = 283 (P)
(48) 15 * 3 = 45 - 14 * - 16 = - 224 , d = 269 (P)
(49) 15 * 3 = 45 - 14 * - 14 = - 196 , d = 241 (P)
(50) 15 * 3 = 45 - 14 * - 13 = - 182 , d = 227 (P)
(51) 15 * 3 = 45 - 14 * -11 = - 154 , d = 199 (P)
(52) 15 * 3 = 45 - 14 * - 8 = - 112 , d = 157 (P)
(53) 15 * 3 = 45 - 14 * - 7 = - 98 , d = 143 ( =11*13)
(54) 15 * 3 = 45 - 14 * - 4 = - 56 , d = 101 (P)
(55) 15 * 3 = 45 - 14 * - 2 = - 28 , d = 73 (P)
(56) 15 * 3 = 45 - 14 * - 1 = - 14 , d = 59 (P)
(57)15 * 3 = 45 - 14 * 1 = 14 , d = 31 (P)
(58) 15 * 3 = 45 - 14 * 2 = 28 , d = 17 (P)
(59)15 * 3 = 45 - 14 * 4 = 56 , d = - 11 (P)
(60)15 * 3 = 45 - 14 * 7 = 98 , d = - 53 (P)
(61 )15 * 3 = 45 - 14 * 8 = 112 , d = - 67 (P)
(62 )15 * 3 = 45 - 14 * 11 = 154 , d = - 109 (P)
(63) 15 * 3 = 45 - 14 * 13 = 182 , d = - 137 (P)
(64) 15 * 3 = 45 - 14 * 14 = 196 , d = - 151 (P)
(65) 15 * 3 = 45 - 14 * 16 = 224 , d = - 179 (P)
(66) 15 * 3 = 45 - 14 * 17 = 238 , d = - 193 (P)
(67) 15 * 3 = 45 - 14 * 19 = 266 d = - 221 (P)
(68) 15 * 3 = 45 - 14 * 22 = 308 , d = - 263 (P)
(69) 15 * 3 = 45 - 14 * 23 = 322 , d = - 277 (P)
(70) 15 * 3 = 45 - 14 * 26 = 364 , d = - 319 ( = 11*29)
(71) 15 * 3 = 45 - 14 * 28 = 392 , d = - 347 (P)
(72) 15 * 3 = 45 - 14 * 29 = 406 , d = - 361 ( = 19 *19)
(73) 15 * 3 = 45 - 14 * 31 = 434 , d = - 389 (P)
(74) 15 * 3 = 45 - 14 * 32 = 448 , d = - 403 ( =13 * 31)
(75) 15 * 3 = 45 - 14 * 34 = 476 , d = - 431 (P)
(76) 15 * 3 = 45 - 14 * 37 = 518 , d = - 473 ( =11 * 43)
(77) 15 * 3 = 45 - 14 * 38 = 532 , d = - 487 (P)
(78) 15 * 5 = 75 - 14 * -29 = - 406 , d = 481 ( = 13*37)
(79) 15 * 5 = 75 - 14 * -28 = - 392 , d = 467 (P)
(80) 15 * 5 = 75 - 14 * -26 = - 364 , d = 439 (P)
(81) 15 * 5 = 75 - 14 * -23 = - 322 , d = 397 (P)
(82) 15 * 5 = 75 - 14 *- 22 = - 308 , d = 383 (P)
(83) 15 * 5 = 75 - 14 * -19 = - 266 , d = 341 (= 11*31)
(84) 15 * 5 = 75 - 14 * -17 = - 238 , d = 313 (P)
(85) 15 * 5 = 75 - 14 * -16 = - 224 , d = 299 (= 13*23)
(86) 15 * 5 = 75 - 14 * -14 = - 196 , d = 271 (P)
(87) 15 * 5 = 75 - 14 * -13 = - 182 , d = 257 (P)
(88) 15 * 5 = 75 - 14 * -11 = - 154 , d = 229 (P)
(89) 15 * 5 = 75 - 14 * - 8 = - 112 , d = 187 (= 11*17)
(90) 15 * 5 = 75 - 14 * - 7 = - 98 , d = 173 (P)
(91) 15 * 5 = 75 - 14 * - 4 = - 56 , d = 131 (P)
(92) 15 * 5 = 75 - 14 * - 2 = - 28 , d = 103 (P)
(93) 15 * 5 = 75 - 14 * - 1 = - 14 , d = 89 (P)
(94) 15 * 5 = 75 - 14 * 1 = 14 , d = 61 (P)
(95) 15 * 5 = 75 - 14 * 2 = 28 , d = 47 (P)
(96) 15 * 5 = 75 - 14 * 4 = 56 , d = 19 (P)
(97) 15 * 5 = 75 - 14 * 7 = 98 , d = - 23 (P)
(98) 15 * 5 = 75 - 14 * 8 = 112 , d = - 37 (P)
(99) 15 * 5 = 75 - 14 * 11 = 154 , d = - 79 (P)
(100)15 * 5 = 75 - 14 * 13 = 182 , d = - 107 (P)
(101) 15 * 5 = 75 - 14 * 14 = 196 , d = - 121(= 11*11)
(102) 15 * 5 = 75 - 14 * 16 = 224 , d = - 149 (P)
(103) 15 * 5 = 75 - 14 * 17 = 238 , d = - 163 (P)
(104) 15 * 5 = 75 - 14 * 19 = 266 , d = - 191 (P)
(105) 15 * 5 = 75 - 14 * 22 = 308 , d = - 233 (P)
(106) 15 * 5 = 75 - 14 * 23 = 322 , d = - 247 (=13*19)
(107) 15 * 5 = 75 - 14 * 26 = 364 , d = - 289 ( =17*17)
(108) 15 * 5 = 75 - 14 * 28 = 392 , d = - 317 (P)
(109) 15 * 5 = 75 - 14 * 29 = 406 , d = - 331 (P)
(110) 15 * 5 = 75 - 14 * 31 = 434 , d = - 359 (P)
(111) 15 * 5 = 75 - 14 * 32 = 448 , d = - 373 (P)
(112) 15 * 5 = 75 - 14 * 34 = 476 , d = - 401 (P)
(113) 15 * 5 = 75 - 14 * 37 = 518 , d = - 443 (P)
(114) 15 * 5 = 75 - 14 * 38 = 532 , d = - 457 (P)
(115) 15 * 5 = 75 - 14 * 41 = 574 , d = - 499 (P)
-------------------------------------------------------------------------
(116) 15 * 9 = 135 - 14 * - 26 = - 364 , d = 499
(117) 15 * 9 = 135 - 14 * - 23 = - 322 , d = 457
(118) 15 * 9 = 135 - 14 * - 22 = - 308 , d = 443
(119) 15 * 9 = 135 - 14 * - 19 = - 266 , d = 401
(120) 15 * 9 = 135 - 14 * - 17 = - 238 , d = 373
(121) 15 * 9 = 135 - 14 * - 16 = - 224 , d = 359
(122) 15 * 9 = 135 - 14 * - 14 = - 196 , d = 331
(123) 15 * 9 = 135 - 14 * - 13 = - 182 , d = 317
(124) 15 * 9 = 135 - 14 * - 11 = - 154 , d = 289 (=17*17)
(125) 15 * 9 = 135 - 14 * - 8 = - 112 , d = 247 (=13*19)
(126) 15 * 9 = 135 - 14 * - 7 = - 98 , d = 233
(127) 15 * 9 = 135 - 14 * - 4 = - 56 , d = 191
(128) 15 * 9 = 135 - 14 * - 2 = - 28 , d = 163
(129) 15 * 9 = 135 - 14 * - 1 = - 14 , d = 149
(130) 15 * 9 = 135 - 14 * 1 = 14 , d = 121 (=11*11)
(131) 15 * 9 = 135 - 14 * 2 = 28 , d = 107
(132) 15 * 9 = 135 - 14 * 4 = 56 , d = 79
(133) 15 * 9 = 135 - 14 * 7 = 98 , d = 37
(134) 15 * 9 = 135 - 14 * 8 = 112 , d = 23
(135) 15 * 9 = 135 - 14 * 11 = 154 , d = - 19
(136) 15 * 9 = 135 - 14 * 13 = 182 , d = - 47
(137) 15 * 9 = 135 - 14 * 14 = 196 , d = - 61
(138) 15 * 9 = 135 - 14 * 16 = 224 , d = - 89
(139) 15 * 9 = 135 - 14 * 17 = 238 , d = - 103
(140) 15 * 9 = 135 - 14 * 19 = 266 , d = - 131
(141) 15 * 9 = 135 - 14 * 22 = 308 , d = - 173
(142) 15 * 9 = 135 - 14 * 23 = 322 , d = - 187 (=11*17)
(143) 15 * 9 = 135 - 14 * 26 = 364 , d = - 229
(144) 15 * 9 = 135 - 14 * 28 = 392 , d = - 257
(145) 15 * 9 = 135 - 14 * 29 = 406 , d = - 271
(146) 15 * 9 = 135 - 14 * 31 = 434 , d = - 299 (=13*23)
(147) 15 * 9 = 135 - 14 * 32 = 448 , d = - 313
(148) 15 * 9 = 135 - 14 * 34 = 476 , d = - 341 (=11*31)
(149) 15 * 9 = 135 - 14 * 37 = 518 , d = - 383
(150) 15 * 9 = 135 - 14 * 38 = 532 , d = - 397
(151) 15 * 9 = 135 - 14 * 41 = 574 , d = - 439
(152) 15 * 9 = 135 - 14 * 43 = 602 , d = - 467
(153) 15 * 9 = 135 - 14 * 44 = 616 , d = - 481 (=13*37)
(154) 15 * 11 = 165 - 14 * - 23 = - 322 , d = 487
(155) 15 * 11 = 165 - 14 * -22 = - 308 , d = 473 (=11*43)
(156) 15 * 11 = 165 - 14 * -19 = - 266 , d = 431
(157) 15 * 11 = 165 - 14 * -17 = - 238 , d = 403 (=13*31)
(158) 15 * 11 = 165 - 14 * -16 = - 224 , d = 389
(159) 15 * 11 = 165 - 14 * -14 = - 196 , d = 361 (=19*19)
(160) 15 * 11 = 165 - 14 * -13 = - 182 , d = 347
(161) 15 * 11 = 165 - 14 * -11 = - 154 , d = 319 (=11*29)
(162) 15 * 11 = 165 - 14 * - 8 = - 112 , d = 277
(163) 15 * 11 = 165 - 14 * - 7 = - 98 , d = 263
(164)15 * 11 = 165 - 14 * - 4 = - 56 , d = 221
(165)15 * 11 = 165 - 14 * - 2 = - 28 , d = 193
(166)15 * 11 = 165 - 14 * -1 = - 14 , d = 179
(167)15 * 11 = 165 - 14 * 1 = 14 , d = 151
(168)15 * 11 = 165 - 14 * 2 = 28 , d = 137
(169)15 * 11 = 165 - 14 * 4 = 56 , d = 109
(170)15 * 11 = 165 - 14 * 7 = 98 , d = 67
(171)15 * 11 = 165 - 14 * 8 = 112 , d = 53
(172)15 * 11 = 165 - 14 * 11= 154 , d = 11
(173)15 * 11 = 165 - 14 * 13 = 182 , d = - 17
(174)15 * 11 = 165 - 14 * 14 = 196 , d = - 31
(175)15 * 11 = 165 - 14 * 16 = 224 , d = - 59
(176)15 * 11 = 165 - 14 * 17 = 238 , d = - 73
(177)15 * 11 = 165 - 14 * 19 = 266 , d = - 101
(178)15 * 11 = 165 - 14 * 22 = 308 , d = - 143 (11*13)
(179)15 * 11 = 165 - 14 * 23 = 322 , d = - 157
(180)15 * 11 = 165 - 14 * 26 = 364 , d = - 199
(181)15 * 11 = 165 - 14 * 28 = 392 , d = - 227
(182)15 * 11 = 165 - 14 * 29 = 406 , d = - 241
(183)15 * 11 = 165 - 14 * 31 = 434 , d = - 269
(184) 15 * 11 = 165 - 14 * 32 = 448 , d = - 283
(185)15 * 11 = 165 - 14 * 34 = 476 , d = - 311
(186)15 * 11 = 165 - 14 * 37 = 518 , d = - 353
(187)15 * 11 = 165 - 14 * 38 = 532 , d = - 367
(188)15 * 11 = 165 - 14 * 41 = 574 , d = - 409
(189)15 * 11 = 165 - 14 * 43 = 602 , d = - 437 (=19*23)
(190)15 * 11 = 165 - 14 * 44 = 616 , d = - 451 (=11*41)
(191)15 * 11 = 165 - 14 * 46 = 644 , d = - 479
(192)15 * 11 = 165 - 14 * 47 = 658 , d = - 493 (=17*29)
(193)15 * 13 = 195 - 14 * - 19 = - 266 , d = 461
(194)15 * 13 = 195 - 14 * - 17 = - 238 , d = 433
(195)15 * 13 = 195 - 14 * - 16 = - 224 , d = 419
(196)15 * 13 = 195 - 14 * - 14 = - 196 , d = 391 (=17*23)
(197)15 * 13 = 195 - 14 * - 13 = - 182 , d = 377 (=13*29)
(198)15 * 13 = 195 - 14 * - 11 = - 154 , d = 349
(199)15 * 13 = 195 - 14 * - 8 = - 112 , d = 307
(200)15 * 13 = 195 - 14 * - 7 = - 98 , d = 293
(201)15 * 13 = 195 - 14 * - 4 = - 56 , d = 251
(202)15 * 13 = 195 - 14 * - 2 = - 28 , d = 223
(203)15 * 13 = 195 - 14 * - 1 = - 14 , d = 209 (=11*19)
(204)15 * 13 = 195 - 14 * 1 = 14 , d = 181
(205)15 * 13 = 195 - 14 * 2 = 28 , d = 167
(206)15 * 13 = 195 - 14 * 4 = 56 , d = 139
(207)15 * 13 = 195 - 14 * 7 = 98 , d = 97
(208)15 * 13 = 195 - 14 * 8 = 112 , d = 83
(209)15 * 13 = 195 - 14 * 11 = 154 , d = 41
(210)15 * 13 = 195 - 14 * 13 = 182 , d = 13
(211)15 * 13 = 195 - 14 * 14 = 196 , d = -1
(212)15 * 13 = 195 - 14 * 16 = 224 , d = - 29
(213)15 * 13 = 195 - 14 * 17 = 238 , d = - 43
(214)15 * 13 = 195 - 14 * 19 = 266 , d = - 71
(215)15 * 13 = 195 - 14 * 22 = 308 , d = - 113
(216)15 * 13 = 195 - 14 * 23 = 322 , d = - 127
(217)15 * 13 = 195 - 14 * 26 = 364 , d = - 169 (=13*13)
(218)15 * 13 = 195 - 14 * 28 = 392 , d = - 197
(219)15 * 13 = 195 - 14 * 29 = 406 , d = - 211
(220)15 * 13 = 195 - 14 * 31 = 434 , d = - 239
(221)15 * 13 = 195 - 14 * 32 = 448 , d = - 253 (=11*23)
(222)15 * 13 = 195 - 14 * 34 = 476 , d = - 281
(223)15 * 13 = 195 - 14 * 37 = 518 , d = - 323 (=17*19)
(224)15 * 13 = 195 - 14 * 38 = 532 , d = - 337
(225)15 * 13 = 195 - 14 * 41 = 574 , d = - 379
(226)15 * 13 = 195 - 14 * 43 = 602 , d = - 407 (11*37)
(227)15 * 13 = 195 - 14 * 44 = 616 , d = - 421
(228)15 * 13 = 195 - 14 * 46 = 644 , d = - 449
(229)15 * 13 = 195 - 14 * 47 = 658 , d = - 463
(230)15 * 13 = 195 - 14 * 49 = 686 , d = - 491
(231) 15 * 15 = 225 - 14 * -19 = - 266 , d = 491 while
( 1 ) = 15 * 1 = 15 - 14 * -34 = - 476 , d = 491
Beginning from item (116) its value = value of item (115) * ( -1) .
In general the value of item (r) = value of item (231 - r) *( -1 ).
Thus the value of item (230) will be value of item (1 ) * -1 , i.e. - 491 . The absolute values from (1) to ( 115) will be symmetric ( reflective )with the absolute values from ( 116) to (230) and repeat the cycle starting from (231) .
15 * i - 14 * j = 15 * (i + 14) - 14 * (j + 15 )
= 15 * (i - 14 ) - 14 * (j - 15 )
= 15 * ( i - 14n ) - 14 * ( j - 15n ) ..................(I)
15 * i - 14 * j = -1 * { 15 * 28 - 15 * i - 14 * 30 + 14 * j }
= -1 * { 15 * ( 28 - i) - 14 * ( 30 - j )}
= -1* { 15 * (14n - i) - 14 * ( 15n - j ) }.......(II)
Appendix :
List of composite no. < 500 not containing 2 , 3 , 5 or 7 as factor but with at least 1 factor of 11 , 13 , 17 or 19 . ( 23 ones )
( A ) Arranged in products of prime factors
* | 11 | 13 | 17 | 19 || 23 | 29 | 31 | 37 | 41 | 43 |
11 | 121 | 143 | 187 | 209 || 253 | 319 | 341 | 407 | 451 | 473 |
13 | / | 169 | 221 | 247 || 299 | 377 | 403 | 481 | / | / |
17 | / | / | 289 | 323 || 391 | 493 | / | / | / | / |
19 | / | / | / | 361 || 437 | / | / | / | / | / |
( B ) Rearranged in ascending order
1xx : 121 , 143 , 169 , 187
2xx : 209 , 221 , 247 , 253 , 289 , 299
3xx : 319 , 323 , 341 , 361 , 377 , 391
4xx : 403 , 407 , 437 , 451 , 473 , 481 , 493
Offline
[ 4 ]
Numbers with absolute value < 100 generated mainly from set of { 2 , 3 , 7}
Let S = { 2 , 3 , 7 } and take A = { 7 } and B = { 2 , 3 } ,
thus π A = 7 and πB = 6 , while L = 11 ^2 = 121 .
To generate n = 7 * i - 6 * j for | n | < 100 .
(1) 7 * 1 = 7 - 6 * - 15 = - 90 , d = 97 (P)
(2) 7 * 1 = 7 - 6 * - 13 = - 78 , d = 85 ( = 5 * 17)
(3) 7 * 1 = 7 - 6 * - 12 = - 72 , d = 79 (P)
(4) 7 * 1 = 7 - 6 * - 11 = - 66 , d = 73 (P)
(5) 7 * 1 = 7 - 6 * - 10 = - 60 , d = 67 (P)
(6) 7 * 1 = 7 - 6 * - 9 = - 54 , d = 61 (P)
(7) 7 * 1 = 7 - 6 * - 8 = - 48 , d = 55 ( = 5 * 11)
(8) 7 * 1 = 7 - 6 * - 6 = - 36 , d = 43 (P)
(9) 7 * 1 = 7 - 6 * - 5 = - 30 , d = 37 (P)
(10)7 * 1 = 7 - 6 * - 4 = - 24 , d = 31 (P)
(11)7 * 1 = 7 - 6 * - 3 = - 18 , d = 25 ( = 5 * 5)
(12)7 * 1 = 7 - 6 * - 2 = - 12 , d = 19 (P)
(13)7 * 1 = 7 - 6 * - 1 = - 6 , d = 13 (P)
(14)7 * 1 = 7 - 6 * 1 = 6 , d = 1
(15)7 * 1 = 7 - 6 * 2 = 12 , d = -5 (P)
(16)7 * 1 = 7 - 6 * 3 = 18 , d = - 11 (P)
(17)7 * 1 = 7 - 6 * 4 = 24 , d = - 17 (P)
(18)7 * 1 = 7 - 6 * 5 = 30 , d = - 23 (P)
(19)7 * 1 = 7 - 6 * 6 = 36 , d = - 29 (P)
(20)7 * 1 = 7 - 6 * 8 = 48 , d = - 41 (P)
(21)7 * 1 = 7 - 6 * 9 = 54 , d = - 47 (P)
(22)7 * 1 = 7 - 6 * 10 = 60 , d = - 53 (P)
(23)7 * 1 = 7 - 6 * 11 = 66 , d = - 59 (P)
(24)7 * 1 = 7 - 6 * 12 = 72 , d = - 65 = ( 5 * 13)
(25)7 * 1 = 7 - 6 * 13 = 78 , d = - 71 (P)
(26)7 * 1 = 7 - 6 * 15 = 90 , d = - 83 (P)
(27)7 * 1 = 7 - 6 * 16 = 96 , d = - 89 (P)
(28)7 * 1 = 7 - 6 * 17 = 102 , d = - 95 ( = 5 *19)
(29)7 * 5 = 35 - 6 * - 10 = - 60 , d = 95 ( = 5 *19)
(30)7 * 5 = 35 - 6 * - 9 = - 54 , d = 89
(31)7 * 5 = 35 - 6 * - 8 = - 48 , d = 83
Thus from (1) to (28) the n's so generated had covered
1 , 5 and primes with absolute value from 11 to 97 , together
with multiples of 5 < 100 excluding 2 , 3 and 7 .
Offline