You are not logged in.
Pages: 1
Argon
Gist
Argon (Ar) is a noble gas, an element found in group 18 (VIIIa) of the periodic table. It's a colorless, odorless, and tasteless gas that's chemically inert. Argon is the third most abundant gas in Earth's atmosphere, making up about 1% of it.
Summary
Argon (Ar), chemical element, inert gas of Group 18 (noble gases) of the periodic table, terrestrially the most abundant and industrially the most frequently used of the noble gases. Colourless, odourless, and tasteless, argon gas was isolated (1894) from air by the British scientists Lord Rayleigh and Sir William Ramsay. Henry Cavendish, while investigating atmospheric nitrogen (“phlogisticated air”), had concluded in 1785 that not more than 1/120 part of the nitrogen might be some inert constituent. His work was forgotten until Lord Rayleigh, more than a century later, found that nitrogen prepared by removing oxygen from air is always about 0.5 percent more dense than nitrogen derived from chemical sources such as ammonia. The heavier gas remaining after both oxygen and nitrogen had been removed from air was the first of the noble gases to be discovered on Earth and was named after the Greek word argos, “lazy,” because of its chemical inertness. (Helium had been spectroscopically detected in the Sun in 1868.)
In cosmic abundance, argon ranks approximately 12th among the chemical elements. Argon constitutes 1.288 percent of the atmosphere by weight and 0.934 percent by volume and is found occluded in rocks. Although the stable isotopes argon-36 and argon-38 make up all but a trace of this element in the universe, the third stable isotope, argon-40, makes up 99.60 percent of the argon found on Earth. (Argon-36 and argon-38 make up 0.34 and 0.06 percent of Earth’s argon, respectively.) A major portion of terrestrial argon has been produced, since the Earth’s formation, in potassium-containing minerals by decay of the rare, naturally radioactive isotope potassium-40. The gas slowly leaks into the atmosphere from the rocks in which it is still being formed. The production of argon-40 from potassium-40 decay is utilized as a means of determining Earth’s age (potassium-argon dating).
Argon is isolated on a large scale by the fractional distillation of liquid air. It is used in gas-filled electric light bulbs, radio tubes, and Geiger counters. It also is widely utilized as an inert atmosphere for arc-welding metals, such as aluminum and stainless steel; for the production and fabrication of metals, such as titanium, zirconium, and uranium; and for growing crystals of semiconductors, such as silicon and germanium.
Argon gas condenses to a colourless liquid at −185.8 °C (−302.4 °F) and to a crystalline solid at −189.4 °C (−308.9 °F). The gas cannot be liquefied by pressure above a temperature of −122.3 °C (−188.1 °F), and at this point a pressure of at least 48 atmospheres is required to make it liquefy. At 12 °C (53.6 °F), 3.94 volumes of argon gas dissolve in 100 volumes of water. An electric discharge through argon at low pressure appears pale red and at high pressure, steely blue.
The outermost (valence) shell of argon has eight electrons, making it exceedingly stable and, thus, chemically inert. Argon atoms do not combine with one another; nor have they been observed to combine chemically with atoms of any other element. Argon atoms have been trapped mechanically in cagelike cavities among molecules of other substances, as in crystals of ice or the organic compound hydroquinone (called argon clathrates).
Element Properties
atomic number : 18
atomic weight : [39.792, 39.963]
melting point : −189.2 °C (−308.6 °F)
boiling point : −185.7 °C (−302.3 °F)
density (1 atm, 0° C) : 1.784 g/litre
oxidation state : 0.
Details
Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abundant as water vapor (which averages about 4000 ppmv, but varies greatly), 23 times as abundant as carbon dioxide (400 ppmv), and more than 500 times as abundant as neon (18 ppmv). Argon is the most abundant noble gas in Earth's crust, comprising 0.00015% of the crust.
Nearly all argon in Earth's atmosphere is radiogenic argon-40, derived from the decay of potassium-40 in Earth's crust. In the universe, argon-36 is by far the most common argon isotope, as it is the most easily produced by stellar nucleosynthesis in supernovas.
The complete octet (eight electrons) in the outer atomic shell makes argon stable and resistant to bonding with other elements. Its triple point temperature of 83.8058 K is a defining fixed point in the International Temperature Scale of 1990.
Argon is extracted industrially by the fractional distillation of liquid air. It is mostly used as an inert shielding gas in welding and other high-temperature industrial processes where ordinarily unreactive substances become reactive; for example, an argon atmosphere is used in graphite electric furnaces to prevent the graphite from burning. It is also used in incandescent and fluorescent lighting, and other gas-discharge tubes. It makes a distinctive blue-green gas laser. It is also used in fluorescent glow starters.
Characteristics
Argon has approximately the same solubility in water as oxygen and is 2.5 times more soluble in water than nitrogen. Argon is colorless, odorless, nonflammable and nontoxic as a solid, liquid or gas. Argon is chemically inert under most conditions and forms no confirmed stable compounds at room temperature.
Although argon is a noble gas, it can form some compounds under various extreme conditions. Argon fluorohydride (HArF), a compound of argon with fluorine and hydrogen that is stable below 17 K (−256.1 °C; −429.1 °F), has been demonstrated. Although the neutral ground-state chemical compounds of argon are presently limited to HArF, argon can form clathrates with water when atoms of argon are trapped in a lattice of water molecules. Ions, such as ArH+ , and excited-state complexes, such as ArF, have been demonstrated. Theoretical calculation predicts several more argon compounds that should be stable but have not yet been synthesized.
Occurrence
Argon constitutes 0.934% by volume and 1.288% by mass of Earth's atmosphere. Air is the primary industrial source of purified argon products. Argon is isolated from air by fractionation, most commonly by cryogenic fractional distillation, a process that also produces purified nitrogen, oxygen, neon, krypton and xenon. Earth's crust and seawater contain 1.2 ppm and 0.45 ppm of argon, respectively.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Pages: 1