You are not logged in.
It just struck me that every such proof usually starts with the 1, 2 example ... and I just assumed it was necessary.
But really if you prove that it moves from "n" to "n+1" that should be enough - it is proven all up and down the natural number scale, including 1.
(I think!)
"The physicists defer only to mathematicians, and the mathematicians defer only to God ..." - Leon M. Lederman
Offline
MathsIsFun wrote:Where did I say that?
Here. Fifth post down.
Ahh... so it was YOU that got me to admit to that LOL
"The physicists defer only to mathematicians, and the mathematicians defer only to God ..." - Leon M. Lederman
Offline
Wow, you discovered a new number pattern thingy!
sorry because i dident understand ur story
Maxine
Offline
I discovered that 2^20 ends in 76.
Thereafter, any number of the form 2^20n ends in 76.
Similarly, any number of the form 2^100n ends in 376.
Next, I had to know the last few digits of 2^500 and 2^2500.
When I learnt that they are 9376 and 09376, I was excited.
Because, any number of the form 2^500n would then have to end in 9376
and every 2^2500n would have to end in 09376.
This is what Rora was talking about. You are too young to understand this, Maxine. This is about higher powers of the number 2.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
If Mx is the Least Common Multiple of all numbers from 1 to x,
can it be proved that
x^x < 2^Mx < x^x^x ?
The second part is very simple. 2^Mx is certainly less than x^x^x because both the base and the exponent of 2^Mx are lesser than x^x^x.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
I hate to break it to you, but 2^Mx > x^x^x for x = 0 or 1.
Why did the vector cross the road?
It wanted to be normal.
Offline
0^0^0 is not defined.
But for 1, as you pointed out, 2^Mx > x^x^x.
For this problem, let us take value of x ≥ 2, x ∈ N
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Is this something you are working on, ganesh? Something you want our help with?
"The physicists defer only to mathematicians, and the mathematicians defer only to God ..." - Leon M. Lederman
Offline
You are right, MathsisFun. I am working on this. I shall give you the details next week.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Answer to original question at top was correct according to "Just BASIC" program I wrote:
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536
17 31072
18 62144
19 24288
20 48576
21 97152
22 94304
23 88608
24 77216
25 54432
26 8864
27 17728
28 35456
29 70912
30 41824
31 83648
32 67296
33 34592
34 69184
35 38368
36 76736
37 53472
38 6944
39 13888
40 27776
41 55552
42 11104
43 22208
44 44416
45 88832
46 77664
47 55328
48 10656
49 21312
50 42624
51 85248
52 70496
53 40992
54 81984
55 63968
56 27936
57 55872
58 11744
59 23488
60 46976
61 93952
62 87904
63 75808
64 51616
65 3232
66 6464
67 12928
68 25856
69 51712
70 3424
71 6848
72 13696
73 27392
74 54784
75 9568
76 19136
77 38272
78 76544
79 53088
80 6176
81 12352
82 24704
83 49408
84 98816
85 97632
86 95264
87 90528
88 81056
89 62112
90 24224
91 48448
92 96896
93 93792
94 87584
95 75168
96 50336
97 672
98 1344
99 2688
100 5376
101 10752
102 21504
103 43008
104 86016
105 72032
106 44064
107 88128
108 76256
109 52512
110 5024
111 10048
112 20096
113 40192
114 80384
115 60768
116 21536
117 43072
118 86144
119 72288
120 44576
121 89152
122 78304
123 56608
124 13216
125 26432
126 52864
127 5728
128 11456
129 22912
130 45824
131 91648
132 83296
133 66592
134 33184
135 66368
136 32736
137 65472
138 30944
139 61888
140 23776
141 47552
142 95104
143 90208
144 80416
145 60832
146 21664
147 43328
148 86656
149 73312
150 46624
151 93248
152 86496
153 72992
154 45984
155 91968
156 83936
157 67872
158 35744
159 71488
160 42976
161 85952
162 71904
163 43808
164 87616
165 75232
166 50464
167 928
168 1856
169 3712
170 7424
171 14848
172 29696
173 59392
174 18784
175 37568
176 75136
177 50272
178 544
179 1088
180 2176
181 4352
182 8704
183 17408
184 34816
185 69632
186 39264
187 78528
188 57056
189 14112
190 28224
191 56448
192 12896
193 25792
194 51584
195 3168
196 6336
197 12672
198 25344
199 50688
200 1376
201 2752
202 5504
203 11008
204 22016
205 44032
206 88064
207 76128
208 52256
209 4512
210 9024
211 18048
212 36096
213 72192
214 44384
215 88768
216 77536
217 55072
218 10144
219 20288
220 40576
221 81152
222 62304
223 24608
224 49216
225 98432
226 96864
227 93728
228 87456
229 74912
230 49824
231 99648
232 99296
233 98592
234 97184
235 94368
236 88736
237 77472
238 54944
239 9888
240 19776
241 39552
242 79104
243 58208
244 16416
245 32832
246 65664
247 31328
248 62656
249 25312
250 50624
251 1248
252 2496
253 4992
254 9984
255 19968
256 39936
257 79872
258 59744
259 19488
260 38976
261 77952
262 55904
263 11808
264 23616
265 47232
266 94464
267 88928
268 77856
269 55712
270 11424
271 22848
272 45696
273 91392
274 82784
275 65568
276 31136
277 62272
278 24544
279 49088
280 98176
281 96352
282 92704
283 85408
284 70816
285 41632
286 83264
287 66528
288 33056
289 66112
290 32224
291 64448
292 28896
293 57792
294 15584
295 31168
296 62336
297 24672
298 49344
299 98688
300 97376
301 94752
302 89504
303 79008
304 58016
305 16032
306 32064
307 64128
308 28256
309 56512
310 13024
311 26048
312 52096
313 4192
314 8384
315 16768
316 33536
317 67072
318 34144
319 68288
320 36576
321 73152
322 46304
323 92608
324 85216
325 70432
326 40864
327 81728
328 63456
329 26912
330 53824
331 7648
332 15296
333 30592
334 61184
335 22368
336 44736
337 89472
338 78944
339 57888
340 15776
341 31552
342 63104
343 26208
344 52416
345 4832
346 9664
347 19328
348 38656
349 77312
350 54624
351 9248
352 18496
353 36992
354 73984
355 47968
356 95936
357 91872
358 83744
359 67488
360 34976
361 69952
362 39904
363 79808
364 59616
365 19232
366 38464
367 76928
368 53856
369 7712
370 15424
371 30848
372 61696
373 23392
374 46784
375 93568
376 87136
377 74272
378 48544
379 97088
380 94176
381 88352
382 76704
383 53408
384 6816
385 13632
386 27264
387 54528
388 9056
389 18112
390 36224
391 72448
392 44896
393 89792
394 79584
395 59168
396 18336
397 36672
398 73344
399 46688
400 93376
401 86752
402 73504
403 47008
404 94016
405 88032
406 76064
407 52128
408 4256
409 8512
410 17024
411 34048
412 68096
413 36192
414 72384
415 44768
416 89536
417 79072
418 58144
419 16288
420 32576
421 65152
422 30304
423 60608
424 21216
425 42432
426 84864
427 69728
428 39456
429 78912
430 57824
431 15648
432 31296
433 62592
434 25184
435 50368
436 736
437 1472
438 2944
439 5888
440 11776
441 23552
442 47104
443 94208
444 88416
445 76832
446 53664
447 7328
448 14656
449 29312
450 58624
451 17248
452 34496
453 68992
454 37984
455 75968
456 51936
457 3872
458 7744
459 15488
460 30976
461 61952
462 23904
463 47808
464 95616
465 91232
466 82464
467 64928
468 29856
469 59712
470 19424
471 38848
472 77696
473 55392
474 10784
475 21568
476 43136
477 86272
478 72544
479 45088
480 90176
481 80352
482 60704
483 21408
484 42816
485 85632
486 71264
487 42528
488 85056
489 70112
490 40224
491 80448
492 60896
493 21792
494 43584
495 87168
496 74336
497 48672
498 97344
499 94688
500 89376
501 78752
502 57504
503 15008
504 30016
505 60032
506 20064
507 40128
508 80256
509 60512
510 21024
511 42048
512 84096
513 68192
514 36384
515 72768
516 45536
517 91072
518 82144
519 64288
520 28576
521 57152
522 14304
523 28608
524 57216
525 14432
526 28864
527 57728
528 15456
529 30912
530 61824
531 23648
532 47296
533 94592
534 89184
535 78368
536 56736
537 13472
538 26944
539 53888
540 7776
541 15552
542 31104
543 62208
544 24416
545 48832
546 97664
547 95328
548 90656
549 81312
550 62624
551 25248
552 50496
553 992
554 1984
555 3968
556 7936
557 15872
558 31744
559 63488
560 26976
561 53952
562 7904
563 15808
564 31616
565 63232
566 26464
567 52928
568 5856
569 11712
570 23424
571 46848
572 93696
573 87392
574 74784
575 49568
576 99136
577 98272
578 96544
579 93088
580 86176
581 72352
582 44704
583 89408
584 78816
585 57632
586 15264
587 30528
588 61056
589 22112
590 44224
591 88448
592 76896
593 53792
594 7584
595 15168
596 30336
597 60672
598 21344
599 42688
600 85376
601 70752
602 41504
603 83008
604 66016
605 32032
606 64064
607 28128
608 56256
609 12512
610 25024
611 50048
612 96
613 192
614 384
615 768
616 1536
617 3072
618 6144
619 12288
620 24576
621 49152
622 98304
623 96608
624 93216
625 86432
626 72864
627 45728
628 91456
629 82912
630 65824
631 31648
632 63296
633 26592
634 53184
635 6368
636 12736
637 25472
638 50944
639 1888
640 3776
641 7552
642 15104
643 30208
644 60416
645 20832
646 41664
647 83328
648 66656
649 33312
650 66624
651 33248
652 66496
653 32992
654 65984
655 31968
656 63936
657 27872
658 55744
659 11488
660 22976
661 45952
662 91904
663 83808
664 67616
665 35232
666 70464
667 40928
668 81856
669 63712
670 27424
671 54848
672 9696
673 19392
674 38784
675 77568
676 55136
677 10272
678 20544
679 41088
680 82176
681 64352
682 28704
683 57408
684 14816
685 29632
686 59264
687 18528
688 37056
689 74112
690 48224
691 96448
692 92896
693 85792
694 71584
695 43168
696 86336
697 72672
698 45344
699 90688
700 81376
701 62752
702 25504
703 51008
704 2016
705 4032
706 8064
707 16128
708 32256
709 64512
710 29024
711 58048
712 16096
713 32192
714 64384
715 28768
716 57536
717 15072
718 30144
719 60288
720 20576
721 41152
722 82304
723 64608
724 29216
725 58432
726 16864
727 33728
728 67456
729 34912
730 69824
731 39648
732 79296
733 58592
734 17184
735 34368
736 68736
737 37472
738 74944
739 49888
740 99776
741 99552
742 99104
743 98208
744 96416
745 92832
746 85664
747 71328
748 42656
749 85312
750 70624
751 41248
752 82496
753 64992
754 29984
755 59968
756 19936
757 39872
758 79744
759 59488
760 18976
761 37952
762 75904
763 51808
764 3616
765 7232
766 14464
767 28928
768 57856
769 15712
770 31424
771 62848
772 25696
773 51392
774 2784
775 5568
776 11136
777 22272
778 44544
779 89088
780 78176
781 56352
782 12704
783 25408
784 50816
785 1632
786 3264
787 6528
788 13056
789 26112
790 52224
791 4448
792 8896
793 17792
794 35584
795 71168
796 42336
797 84672
798 69344
799 38688
800 77376
801 54752
802 9504
803 19008
804 38016
805 76032
806 52064
807 4128
808 8256
809 16512
810 33024
811 66048
812 32096
813 64192
814 28384
815 56768
816 13536
817 27072
818 54144
819 8288
820 16576
821 33152
822 66304
823 32608
824 65216
825 30432
826 60864
827 21728
828 43456
829 86912
830 73824
831 47648
832 95296
833 90592
834 81184
835 62368
836 24736
837 49472
838 98944
839 97888
840 95776
841 91552
842 83104
843 66208
844 32416
845 64832
846 29664
847 59328
848 18656
849 37312
850 74624
851 49248
852 98496
853 96992
854 93984
855 87968
856 75936
857 51872
858 3744
859 7488
860 14976
861 29952
862 59904
863 19808
864 39616
865 79232
866 58464
867 16928
868 33856
869 67712
870 35424
871 70848
872 41696
873 83392
874 66784
875 33568
876 67136
877 34272
878 68544
879 37088
880 74176
881 48352
882 96704
883 93408
884 86816
885 73632
886 47264
887 94528
888 89056
889 78112
890 56224
891 12448
892 24896
893 49792
894 99584
895 99168
896 98336
897 96672
898 93344
899 86688
900 73376
901 46752
902 93504
903 87008
904 74016
905 48032
906 96064
907 92128
908 84256
909 68512
910 37024
911 74048
912 48096
913 96192
914 92384
915 84768
916 69536
917 39072
918 78144
919 56288
920 12576
921 25152
922 50304
923 608
924 1216
925 2432
926 4864
927 9728
928 19456
929 38912
930 77824
931 55648
932 11296
933 22592
934 45184
935 90368
936 80736
937 61472
938 22944
939 45888
940 91776
941 83552
942 67104
943 34208
944 68416
945 36832
946 73664
947 47328
948 94656
949 89312
950 78624
951 57248
952 14496
953 28992
954 57984
955 15968
956 31936
957 63872
958 27744
959 55488
960 10976
961 21952
962 43904
963 87808
964 75616
965 51232
966 2464
967 4928
968 9856
969 19712
970 39424
971 78848
972 57696
973 15392
974 30784
975 61568
976 23136
977 46272
978 92544
979 85088
980 70176
981 40352
982 80704
983 61408
984 22816
985 45632
986 91264
987 82528
988 65056
989 30112
990 60224
991 20448
992 40896
993 81792
994 63584
995 27168
996 54336
997 8672
998 17344
999 34688
1000 69376
1001 38752
1002 77504
1003 55008
1004 10016
1005 20032
1006 40064
1007 80128
1008 60256
1009 20512
1010 41024
1011 82048
1012 64096
1013 28192
1014 56384
1015 12768
1016 25536
1017 51072
1018 2144
1019 4288
1020 8576
1021 17152
1022 34304
1023 68608
1024 37216
1025 74432
1026 48864
1027 97728
1028 95456
1029 90912
1030 81824
1031 63648
1032 27296
1033 54592
1034 9184
1035 18368
1036 36736
1037 73472
1038 46944
1039 93888
1040 87776
1041 75552
1042 51104
1043 2208
1044 4416
1045 8832
1046 17664
1047 35328
1048 70656
1049 41312
1050 82624
1051 65248
1052 30496
1053 60992
1054 21984
1055 43968
1056 87936
1057 75872
1058 51744
1059 3488
1060 6976
1061 13952
1062 27904
1063 55808
1064 11616
1065 23232
1066 46464
1067 92928
1068 85856
1069 71712
1070 43424
1071 86848
1072 73696
1073 47392
1074 94784
1075 89568
1076 79136
1077 58272
1078 16544
1079 33088
1080 66176
1081 32352
1082 64704
1083 29408
1084 58816
1085 17632
1086 35264
1087 70528
1088 41056
1089 82112
1090 64224
1091 28448
1092 56896
1093 13792
1094 27584
1095 55168
1096 10336
1097 20672
1098 41344
1099 82688
1100 65376
1101 30752
1102 61504
1103 23008
1104 46016
1105 92032
1106 84064
1107 68128
1108 36256
1109 72512
1110 45024
1111 90048
1112 80096
1113 60192
1114 20384
1115 40768
1116 81536
1117 63072
1118 26144
1119 52288
1120 4576
1121 9152
1122 18304
1123 36608
1124 73216
1125 46432
1126 92864
1127 85728
1128 71456
1129 42912
1130 85824
1131 71648
1132 43296
1133 86592
1134 73184
1135 46368
1136 92736
1137 85472
1138 70944
1139 41888
1140 83776
1141 67552
1142 35104
1143 70208
1144 40416
1145 80832
1146 61664
1147 23328
1148 46656
1149 93312
1150 86624
1151 73248
1152 46496
1153 92992
1154 85984
1155 71968
1156 43936
1157 87872
1158 75744
1159 51488
1160 2976
1161 5952
1162 11904
1163 23808
1164 47616
1165 95232
1166 90464
1167 80928
1168 61856
1169 23712
1170 47424
1171 94848
1172 89696
1173 79392
1174 58784
1175 17568
1176 35136
1177 70272
1178 40544
1179 81088
1180 62176
1181 24352
1182 48704
1183 97408
1184 94816
1185 89632
1186 79264
1187 58528
1188 17056
1189 34112
1190 68224
1191 36448
1192 72896
1193 45792
1194 91584
1195 83168
1196 66336
1197 32672
1198 65344
1199 30688
1200 61376
1201 22752
1202 45504
1203 91008
1204 82016
1205 64032
1206 28064
1207 56128
1208 12256
1209 24512
1210 49024
1211 98048
1212 96096
1213 92192
1214 84384
1215 68768
1216 37536
1217 75072
1218 50144
1219 288
1220 576
1221 1152
1222 2304
1223 4608
1224 9216
1225 18432
1226 36864
1227 73728
1228 47456
1229 94912
1230 89824
1231 79648
1232 59296
1233 18592
1234 37184
1235 74368
1236 48736
1237 97472
1238 94944
1239 89888
1240 79776
1241 59552
1242 19104
1243 38208
1244 76416
1245 52832
1246 5664
1247 11328
1248 22656
1249 45312
1250 90624
1251 81248
1252 62496
1253 24992
1254 49984
1255 99968
1256 99936
1257 99872
1258 99744
1259 99488
1260 98976
1261 97952
1262 95904
1263 91808
1264 83616
1265 67232
1266 34464
1267 68928
1268 37856
1269 75712
1270 51424
1271 2848
1272 5696
1273 11392
1274 22784
1275 45568
1276 91136
1277 82272
1278 64544
1279 29088
1280 58176
1281 16352
1282 32704
1283 65408
1284 30816
1285 61632
1286 23264
1287 46528
1288 93056
1289 86112
1290 72224
1291 44448
1292 88896
1293 77792
1294 55584
1295 11168
1296 22336
1297 44672
1298 89344
1299 78688
1300 57376
1301 14752
1302 29504
1303 59008
1304 18016
1305 36032
1306 72064
1307 44128
1308 88256
1309 76512
1310 53024
1311 6048
1312 12096
1313 24192
1314 48384
1315 96768
1316 93536
1317 87072
1318 74144
1319 48288
1320 96576
1321 93152
1322 86304
1323 72608
1324 45216
1325 90432
1326 80864
1327 61728
1328 23456
1329 46912
1330 93824
1331 87648
1332 75296
1333 50592
1334 1184
1335 2368
1336 4736
1337 9472
1338 18944
1339 37888
1340 75776
1341 51552
1342 3104
1343 6208
1344 12416
1345 24832
1346 49664
1347 99328
1348 98656
1349 97312
1350 94624
1351 89248
1352 78496
1353 56992
1354 13984
1355 27968
1356 55936
1357 11872
1358 23744
1359 47488
1360 94976
1361 89952
1362 79904
1363 59808
1364 19616
1365 39232
1366 78464
1367 56928
1368 13856
1369 27712
1370 55424
1371 10848
1372 21696
1373 43392
1374 86784
1375 73568
1376 47136
1377 94272
1378 88544
1379 77088
1380 54176
1381 8352
1382 16704
1383 33408
1384 66816
1385 33632
1386 67264
1387 34528
1388 69056
1389 38112
1390 76224
1391 52448
1392 4896
1393 9792
1394 19584
1395 39168
1396 78336
1397 56672
1398 13344
1399 26688
1400 53376
1401 6752
1402 13504
1403 27008
1404 54016
1405 8032
1406 16064
1407 32128
1408 64256
1409 28512
1410 57024
1411 14048
1412 28096
1413 56192
1414 12384
1415 24768
1416 49536
1417 99072
1418 98144
1419 96288
1420 92576
1421 85152
1422 70304
1423 40608
1424 81216
1425 62432
1426 24864
1427 49728
1428 99456
1429 98912
1430 97824
1431 95648
1432 91296
1433 82592
1434 65184
1435 30368
1436 60736
1437 21472
1438 42944
1439 85888
1440 71776
1441 43552
1442 87104
1443 74208
1444 48416
1445 96832
1446 93664
1447 87328
1448 74656
1449 49312
1450 98624
1451 97248
1452 94496
1453 88992
1454 77984
1455 55968
1456 11936
1457 23872
1458 47744
1459 95488
1460 90976
1461 81952
1462 63904
1463 27808
1464 55616
1465 11232
1466 22464
1467 44928
1468 89856
1469 79712
1470 59424
1471 18848
1472 37696
1473 75392
1474 50784
1475 1568
1476 3136
1477 6272
1478 12544
1479 25088
1480 50176
1481 352
1482 704
1483 1408
1484 2816
1485 5632
1486 11264
1487 22528
1488 45056
1489 90112
1490 80224
1491 60448
1492 20896
1493 41792
1494 83584
1495 67168
1496 34336
1497 68672
1498 37344
1499 74688
1500 49376
1501 98752
1502 97504
1503 95008
1504 90016
1505 80032
1506 60064
1507 20128
1508 40256
1509 80512
1510 61024
1511 22048
1512 44096
1513 88192
1514 76384
1515 52768
1516 5536
1517 11072
1518 22144
1519 44288
1520 88576
1521 77152
1522 54304
1523 8608
1524 17216
1525 34432
1526 68864
1527 37728
1528 75456
1529 50912
1530 1824
1531 3648
1532 7296
1533 14592
1534 29184
1535 58368
1536 16736
1537 33472
1538 66944
1539 33888
1540 67776
1541 35552
1542 71104
1543 42208
1544 84416
1545 68832
1546 37664
1547 75328
1548 50656
1549 1312
1550 2624
1551 5248
1552 10496
1553 20992
1554 41984
1555 83968
1556 67936
1557 35872
1558 71744
1559 43488
1560 86976
1561 73952
1562 47904
1563 95808
1564 91616
1565 83232
1566 66464
1567 32928
1568 65856
1569 31712
1570 63424
1571 26848
1572 53696
1573 7392
1574 14784
1575 29568
1576 59136
1577 18272
1578 36544
1579 73088
1580 46176
1581 92352
1582 84704
1583 69408
1584 38816
1585 77632
1586 55264
1587 10528
1588 21056
1589 42112
1590 84224
1591 68448
1592 36896
1593 73792
1594 47584
1595 95168
1596 90336
1597 80672
1598 61344
1599 22688
1600 45376
1601 90752
1602 81504
1603 63008
1604 26016
1605 52032
1606 4064
1607 8128
1608 16256
1609 32512
1610 65024
1611 30048
1612 60096
1613 20192
1614 40384
1615 80768
1616 61536
1617 23072
1618 46144
1619 92288
1620 84576
1621 69152
1622 38304
1623 76608
1624 53216
1625 6432
1626 12864
1627 25728
1628 51456
1629 2912
1630 5824
1631 11648
1632 23296
1633 46592
1634 93184
1635 86368
1636 72736
1637 45472
1638 90944
1639 81888
1640 63776
1641 27552
1642 55104
1643 10208
1644 20416
1645 40832
1646 81664
1647 63328
1648 26656
1649 53312
1650 6624
1651 13248
1652 26496
1653 52992
1654 5984
1655 11968
1656 23936
1657 47872
1658 95744
1659 91488
1660 82976
1661 65952
1662 31904
1663 63808
1664 27616
1665 55232
1666 10464
1667 20928
1668 41856
1669 83712
1670 67424
1671 34848
1672 69696
1673 39392
1674 78784
1675 57568
1676 15136
1677 30272
1678 60544
1679 21088
1680 42176
1681 84352
1682 68704
1683 37408
1684 74816
1685 49632
1686 99264
1687 98528
1688 97056
1689 94112
1690 88224
1691 76448
1692 52896
1693 5792
1694 11584
1695 23168
1696 46336
1697 92672
1698 85344
1699 70688
1700 41376
1701 82752
1702 65504
1703 31008
1704 62016
1705 24032
1706 48064
1707 96128
1708 92256
1709 84512
1710 69024
1711 38048
1712 76096
1713 52192
1714 4384
1715 8768
1716 17536
1717 35072
1718 70144
1719 40288
1720 80576
1721 61152
1722 22304
1723 44608
1724 89216
1725 78432
1726 56864
1727 13728
1728 27456
1729 54912
1730 9824
1731 19648
1732 39296
1733 78592
1734 57184
1735 14368
1736 28736
1737 57472
1738 14944
1739 29888
1740 59776
1741 19552
1742 39104
1743 78208
1744 56416
1745 12832
1746 25664
1747 51328
1748 2656
1749 5312
1750 10624
1751 21248
1752 42496
1753 84992
1754 69984
1755 39968
1756 79936
1757 59872
1758 19744
1759 39488
1760 78976
1761 57952
1762 15904
1763 31808
1764 63616
1765 27232
1766 54464
1767 8928
1768 17856
1769 35712
1770 71424
1771 42848
1772 85696
1773 71392
1774 42784
1775 85568
1776 71136
1777 42272
1778 84544
1779 69088
1780 38176
1781 76352
1782 52704
1783 5408
1784 10816
1785 21632
1786 43264
1787 86528
1788 73056
1789 46112
1790 92224
1791 84448
1792 68896
1793 37792
1794 75584
1795 51168
1796 2336
1797 4672
1798 9344
1799 18688
1800 37376
1801 74752
1802 49504
1803 99008
1804 98016
1805 96032
1806 92064
1807 84128
1808 68256
1809 36512
1810 73024
1811 46048
1812 92096
1813 84192
1814 68384
1815 36768
1816 73536
1817 47072
1818 94144
1819 88288
1820 76576
1821 53152
1822 6304
1823 12608
1824 25216
1825 50432
1826 864
1827 1728
1828 3456
1829 6912
1830 13824
1831 27648
1832 55296
1833 10592
1834 21184
1835 42368
1836 84736
1837 69472
1838 38944
1839 77888
1840 55776
1841 11552
1842 23104
1843 46208
1844 92416
1845 84832
1846 69664
1847 39328
1848 78656
1849 57312
1850 14624
1851 29248
1852 58496
1853 16992
1854 33984
1855 67968
1856 35936
1857 71872
1858 43744
1859 87488
1860 74976
1861 49952
1862 99904
1863 99808
1864 99616
1865 99232
1866 98464
1867 96928
1868 93856
1869 87712
1870 75424
1871 50848
1872 1696
1873 3392
1874 6784
1875 13568
1876 27136
1877 54272
1878 8544
1879 17088
1880 34176
1881 68352
1882 36704
1883 73408
1884 46816
1885 93632
1886 87264
1887 74528
1888 49056
1889 98112
1890 96224
1891 92448
1892 84896
1893 69792
1894 39584
1895 79168
1896 58336
1897 16672
1898 33344
1899 66688
1900 33376
1901 66752
1902 33504
1903 67008
1904 34016
1905 68032
1906 36064
1907 72128
1908 44256
1909 88512
1910 77024
1911 54048
1912 8096
1913 16192
1914 32384
1915 64768
1916 29536
1917 59072
1918 18144
1919 36288
1920 72576
1921 45152
1922 90304
1923 80608
1924 61216
1925 22432
1926 44864
1927 89728
1928 79456
1929 58912
1930 17824
1931 35648
1932 71296
1933 42592
1934 85184
1935 70368
1936 40736
1937 81472
1938 62944
1939 25888
1940 51776
1941 3552
1942 7104
1943 14208
1944 28416
1945 56832
1946 13664
1947 27328
1948 54656
1949 9312
1950 18624
1951 37248
1952 74496
1953 48992
1954 97984
1955 95968
1956 91936
1957 83872
1958 67744
1959 35488
1960 70976
1961 41952
1962 83904
1963 67808
1964 35616
1965 71232
1966 42464
1967 84928
1968 69856
1969 39712
1970 79424
1971 58848
1972 17696
1973 35392
1974 70784
1975 41568
1976 83136
1977 66272
1978 32544
1979 65088
1980 30176
1981 60352
1982 20704
1983 41408
1984 82816
1985 65632
1986 31264
1987 62528
1988 25056
1989 50112
1990 224
1991 448
1992 896
1993 1792
1994 3584
1995 7168
1996 14336
1997 28672
1998 57344
1999 14688
2000 29376
2001 58752
2002 17504
2003 35008
2004 70016
2005 40032
2006 80064
2007 60128
2008 20256
2009 40512
2010 81024
2011 62048
2012 24096
2013 48192
2014 96384
2015 92768
2016 85536
2017 71072
2018 42144
2019 84288
2020 68576
2021 37152
2022 74304
2023 48608
2024 97216
2025 94432
2026 88864
2027 77728
2028 55456
2029 10912
2030 21824
2031 43648
2032 87296
2033 74592
2034 49184
2035 98368
2036 96736
2037 93472
2038 86944
2039 73888
2040 47776
2041 95552
2042 91104
2043 82208
2044 64416
2045 28832
2046 57664
2047 15328
2048 30656
2049 61312
2050 22624
2051 45248
2052 90496
2053 80992
2054 61984
2055 23968
2056 47936
2057 95872
2058 91744
2059 83488
2060 66976
2061 33952
2062 67904
2063 35808
2064 71616
2065 43232
2066 86464
2067 72928
2068 45856
2069 91712
2070 83424
2071 66848
2072 33696
2073 67392
2074 34784
2075 69568
2076 39136
2077 78272
2078 56544
2079 13088
2080 26176
2081 52352
2082 4704
2083 9408
2084 18816
2085 37632
2086 75264
2087 50528
2088 1056
2089 2112
2090 4224
2091 8448
2092 16896
2093 33792
2094 67584
2095 35168
2096 70336
2097 40672
2098 81344
2099 62688
2100 25376
2101 50752
2102 1504
2103 3008
2104 6016
2105 12032
2106 24064
2107 48128
2108 96256
2109 92512
2110 85024
2111 70048
2112 40096
2113 80192
2114 60384
2115 20768
2116 41536
2117 83072
2118 66144
2119 32288
2120 64576
2121 29152
2122 58304
2123 16608
2124 33216
2125 66432
2126 32864
2127 65728
2128 31456
2129 62912
2130 25824
2131 51648
2132 3296
2133 6592
2134 13184
2135 26368
2136 52736
2137 5472
2138 10944
2139 21888
2140 43776
2141 87552
2142 75104
2143 50208
2144 416
2145 832
2146 1664
2147 3328
2148 6656
2149 13312
2150 26624
2151 53248
2152 6496
2153 12992
2154 25984
2155 51968
2156 3936
2157 7872
2158 15744
2159 31488
2160 62976
2161 25952
2162 51904
2163 3808
2164 7616
2165 15232
2166 30464
2167 60928
2168 21856
2169 43712
2170 87424
2171 74848
2172 49696
2173 99392
2174 98784
2175 97568
2176 95136
2177 90272
2178 80544
2179 61088
2180 22176
2181 44352
2182 88704
2183 77408
2184 54816
2185 9632
2186 19264
2187 38528
2188 77056
2189 54112
2190 8224
2191 16448
2192 32896
2193 65792
2194 31584
2195 63168
2196 26336
2197 52672
2198 5344
2199 10688
2200 21376
2201 42752
2202 85504
2203 71008
2204 42016
2205 84032
2206 68064
2207 36128
2208 72256
2209 44512
2210 89024
2211 78048
2212 56096
2213 12192
2214 24384
2215 48768
2216 97536
2217 95072
2218 90144
2219 80288
2220 60576
2221 21152
2222 42304
2223 84608
2224 69216
2225 38432
2226 76864
2227 53728
2228 7456
2229 14912
2230 29824
2231 59648
2232 19296
2233 38592
2234 77184
2235 54368
2236 8736
2237 17472
2238 34944
2239 69888
2240 39776
2241 79552
2242 59104
2243 18208
2244 36416
2245 72832
2246 45664
2247 91328
2248 82656
2249 65312
2250 30624
2251 61248
2252 22496
2253 44992
2254 89984
2255 79968
2256 59936
2257 19872
2258 39744
2259 79488
2260 58976
2261 17952
2262 35904
2263 71808
2264 43616
2265 87232
2266 74464
2267 48928
2268 97856
2269 95712
2270 91424
2271 82848
2272 65696
2273 31392
2274 62784
2275 25568
2276 51136
2277 2272
2278 4544
2279 9088
2280 18176
2281 36352
2282 72704
2283 45408
2284 90816
2285 81632
2286 63264
2287 26528
2288 53056
2289 6112
2290 12224
2291 24448
2292 48896
2293 97792
2294 95584
2295 91168
2296 82336
2297 64672
2298 29344
2299 58688
2300 17376
2301 34752
2302 69504
2303 39008
2304 78016
2305 56032
2306 12064
2307 24128
2308 48256
2309 96512
2310 93024
2311 86048
2312 72096
2313 44192
2314 88384
2315 76768
2316 53536
2317 7072
2318 14144
2319 28288
2320 56576
2321 13152
2322 26304
2323 52608
2324 5216
2325 10432
2326 20864
2327 41728
2328 83456
2329 66912
2330 33824
2331 67648
2332 35296
2333 70592
2334 41184
2335 82368
2336 64736
2337 29472
2338 58944
2339 17888
2340 35776
2341 71552
2342 43104
2343 86208
2344 72416
2345 44832
2346 89664
2347 79328
2348 58656
2349 17312
2350 34624
2351 69248
2352 38496
2353 76992
2354 53984
2355 7968
2356 15936
2357 31872
2358 63744
2359 27488
2360 54976
2361 9952
2362 19904
2363 39808
2364 79616
2365 59232
2366 18464
2367 36928
2368 73856
2369 47712
2370 95424
2371 90848
2372 81696
2373 63392
2374 26784
2375 53568
2376 7136
2377 14272
2378 28544
2379 57088
2380 14176
2381 28352
2382 56704
2383 13408
2384 26816
2385 53632
2386 7264
2387 14528
2388 29056
2389 58112
2390 16224
2391 32448
2392 64896
2393 29792
2394 59584
2395 19168
2396 38336
2397 76672
2398 53344
2399 6688
2400 13376
2401 26752
2402 53504
2403 7008
2404 14016
2405 28032
2406 56064
2407 12128
2408 24256
2409 48512
2410 97024
2411 94048
2412 88096
2413 76192
2414 52384
2415 4768
2416 9536
2417 19072
2418 38144
2419 76288
2420 52576
2421 5152
2422 10304
2423 20608
2424 41216
2425 82432
2426 64864
2427 29728
2428 59456
2429 18912
2430 37824
2431 75648
2432 51296
2433 2592
2434 5184
2435 10368
2436 20736
2437 41472
2438 82944
2439 65888
2440 31776
2441 63552
2442 27104
2443 54208
2444 8416
2445 16832
2446 33664
2447 67328
2448 34656
2449 69312
2450 38624
2451 77248
2452 54496
2453 8992
2454 17984
2455 35968
2456 71936
2457 43872
2458 87744
2459 75488
2460 50976
2461 1952
2462 3904
2463 7808
2464 15616
2465 31232
2466 62464
2467 24928
2468 49856
2469 99712
2470 99424
2471 98848
2472 97696
2473 95392
2474 90784
2475 81568
2476 63136
2477 26272
2478 52544
2479 5088
2480 10176
2481 20352
2482 40704
2483 81408
2484 62816
2485 25632
2486 51264
2487 2528
2488 5056
2489 10112
2490 20224
2491 40448
2492 80896
2493 61792
2494 23584
2495 47168
2496 94336
2497 88672
2498 77344
2499 54688
2500 9376
Sorry about the disk space I must be using somewhere...
How very stretchy of you.
Why did the vector cross the road?
It wanted to be normal.
Offline
I'm not good at proofs, but this is my attempt:
Take 109376 as an example.
We need to prove that (y109376)² ends in y109376 for only one value of y.
y109376 can be written as y*10^6+1*10^5+0*10^4+9*10^3+3*10^2+7*10^1+6*10^0.
We are only interested in the 10^6 coefficient of the square of this. That will be equal to 2(y*(6*10^0))+a constant made up of the expansion of the other powers of 10, but that does not involve y.
So, the 10^6 coefficient is 12y+c, which should only be equal to y for one value of y.
We are only interested in the last digit of 12y+c, so it can be called 2y+c without affecting our purposes. However big c is, it can also have all of its digits except the last removed.
We want to solve y=2y+c.
Take away y+c: y=-c
Give back one of c's 10's to make it more sensible: y=10-c
c is a constant, so there is only one value for y.As shown in the expansion of y109376, the important coefficient will always take the form 2(y*6), because 6 is always the last digit. This means that this proof can be carried forward for any point on the chain of the magic number.[/proof]
There's probably a flaw in there somewhere, could someone check it please?
Thanks a million, Mathsyperson! I have checked the proof thoroughly and now, I can declare the proof is precise, elegant, and flawless.
This proof has been very helpful to me.
I thank you, again, MathsIsFun, for the Full Precision Calculator.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Woo! For the number that ends in 5, the partner to the one you found, if you apply my proof to that then you will eventually get that the last digit is the last digit of 10y+c, and so would also be the last digit of c. It's much easier to continue the chain of the number ending in 5 because of that property and, as mentioned earlier, the one ending in 6 adds to the one ending in 5 to give 1000...0001, so you can use that to work out the one ending in 6 much quicker.
Why did the vector cross the road?
It wanted to be normal.
Offline
I must be really bad at moth cause I have no clue what you guys are talking about!
It may not be true that you are bad at Math, Alisha...the topic we're discussing is not taught at School...simple as that
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline