You are not logged in.
Pages: 1
I) tan v = -1
II) 2 - tan v = 0
III) 2 tan v + 5 = 0
IV) sin x = tan x
V) 2 sin x = tan x
Thanks for help!
Offline
I) tan v= -1 = tan (- π/4)
Particualr Value, v= -π/4
General Value, v= nπ - π/4, where n=0,1,2,.....
II) tan v= 2 = tan (63.4349...)
Particualr Value, v= tan^-1(2)
General Value, v= nπ +tan^-1(2), where n=0,1,2,.....
III) tan v= 5/2 = tan (68.1986...)
Particualr Value, v= tan^-1(5/2)
General Value, v= nπ +tan^-1(5/2), where n=0,1,2,....
IV) sin x = tan x
sin x cos x - sinx = 0 ( as tan x = sin x/ cos x )
sin x (cos x -1) =0
either sin x = 0 to cos x = 1
in general x = nπ, where n= 0,1,2,....
V) 2sin x = tan x
2 sin x cos x - sinx = 0 ( as tan x = sin x/ cos x )
sin x (2 cos x -1) =0
either sin x = 0 to cos x = 1/2
if sin x = 0, in general x = nπ, where n= 0,1,2,...
if cos x = 1/2, in general x = 2nπ +/- π/3, n= 0,1,2,...
Hence either x = nπ or x = 2nπ +/- π/3, n= 0,1,2,...
Last edited by abhishek_rttc (2005-10-03 21:13:03)
Offline
Pages: 1