You are not logged in.
Pages: 1
How many Negative roots of the equation
hi jacks,
If you differentiate you get
So if we knew it's roots we'd know where the turning points of the quartic are; but it doesn't solve readily.
So differentiate again
This quadratic has two roots, one negative and one positive, so the cubic has two turning points; the negative one is a maximum and the positive one is a minimum.
Substitute the negative one and you'll find this maximum is a negative value, so the cubic only crosses the x axis once, at a point after the positive root of the quadratic.
That crossing point means the quartic has only one turning point and it's at a positive value of x.
When x = o the quartic = 4, => it never crosses the x axis in negative values.
The graphs below may help to show this more clearly.
Bob
Last edited by Bob (2011-11-13 20:45:49)
Children are not defined by school ...........The Fonz
You cannot teach a man anything; you can only help him find it within himself..........Galileo Galilei
Sometimes I deliberately make mistakes, just to test you! …………….Bob
Offline
Pages: 1