You are not logged in.
Pages: 1
Let A = {0,1,2 ..... 9}
how many different 4-digit number that is divisible by 3
if number is choosen from set A
Offline
Are we allowed to choose a number more than once? for eg can we make a 4 digit number: 9999?
And to get you started:
How do you check if a number is divisible by 3?
How many such combinations are there from your set?
Offline
Assume that 0000 = 0 and 0003 = 3 and 0099 = 99 and 0999 = 999.
If this is allowable the answer is:
9999/3 or 3333 I believe.
igloo myrtilles fourmis
Offline
Hi;
If we assume with replacement, then there are 9000 numbers(1000 - 9999 ). So there are 3000 numbers that are divisible by 3.
If we assume without replacement, then there are 9*9*8*7=4536 possible 4 digit numbers.
Of those there are 1548 that are divisble by 3.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
If we assume without replacement, then there are 9*9*8*7=4536 possible 4 digit numbers.
I am wondering how you got 9*9 when you say without replacement.
enlighten me!
Edit: Nevermind, I see what assumption you made.
Last edited by careless25 (2011-12-02 07:49:53)
Offline
here we take no. without replacement
thanks to all
bobbym i want more explanation for without replacement
thanks
Offline
To have a 4 digit number you can not have a zero up front so there are 9 choices for the first. There are 9 remaining for the second. Eight choices remaining for the third. And seven left for the fourth.
9 * 9 * 8 * 7 = 4536
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Let A = {0,1,2 ..... 9}
how many different 4-digit number that is divisible by 3
if number is choosen from set A
Let A = {0,1,2 ..... 9}
How many different 4-digit numbers are divisible by 3
if each digit is chosen without replacementfrom set A, and 0 cannot be a leading digit?
For each of the following, there are potentially 4! permutations,
except that 0 cannot be a leading digit, so 3! permutations
must be subtracted. So multiply each of these representative
numbers by 18 to get the total number of permutations for
this partial group:
1023
1026
1029
1035
1038
1047
1053
1056
1062
1065
1068
1074
1083
1086
1089
---------
18(15) = 270
___________________
For this second (last) partial group,
the number of permutations for
each representative number is 4!
Then multiply by 24 to get the total
number of permutations for this
partial group:
1236
1239
1245
1248
1257
1269
1278
1347
1356
1359
1368
1389
1458
1467
1479
1569
1578
1689
2346
2349
2358
2367
2379
2457
2469
2478
2568
2679
3456
3459
3468
3567
3579
3678
3789
4569
4578
5679
6789
--------
24(39) = 936
Grand total
-------------
270 + 936 = 1,206
Signature line:
I wish a had a more interesting signature line.
Offline
Hi;
]Grand total
-------------
270 + 936 = 1,206
The answer of 1206 is a little low.
Here they are:
{1023, 1026, 1029, 1032, 1035, 1038, 1047, 1053, 1056, 1059, 1062, \
1065, 1068, 1074, 1083, 1086, 1089, 1092, 1095, 1098, 1203, 1206, \
1209, 1230, 1236, 1239, 1245, 1248, 1254, 1257, 1260, 1263, 1269, \
1275, 1278, 1284, 1287, 1290, 1293, 1296, 1302, 1305, 1308, 1320, \
1326, 1329, 1347, 1350, 1356, 1359, 1362, 1365, 1368, 1374, 1380, \
1386, 1389, 1392, 1395, 1398, 1407, 1425, 1428, 1437, 1452, 1458, \
1467, 1470, 1473, 1476, 1479, 1482, 1485, 1497, 1503, 1506, 1509, \
1524, 1527, 1530, 1536, 1539, 1542, 1548, 1560, 1563, 1569, 1572, \
1578, 1584, 1587, 1590, 1593, 1596, 1602, 1605, 1608, 1620, 1623, \
1629, 1632, 1635, 1638, 1647, 1650, 1653, 1659, 1674, 1680, 1683, \
1689, 1692, 1695, 1698, 1704, 1725, 1728, 1734, 1740, 1743, 1746, \
1749, 1752, 1758, 1764, 1782, 1785, 1794, 1803, 1806, 1809, 1824, \
1827, 1830, 1836, 1839, 1842, 1845, 1854, 1857, 1860, 1863, 1869, \
1872, 1875, 1890, 1893, 1896, 1902, 1905, 1908, 1920, 1923, 1926, \
1932, 1935, 1938, 1947, 1950, 1953, 1956, 1962, 1965, 1968, 1974, \
1980, 1983, 1986, 2013, 2016, 2019, 2031, 2034, 2037, 2043, 2046, \
2049, 2058, 2061, 2064, 2067, 2073, 2076, 2079, 2085, 2091, 2094, \
2097, 2103, 2106, 2109, 2130, 2136, 2139, 2145, 2148, 2154, 2157, \
2160, 2163, 2169, 2175, 2178, 2184, 2187, 2190, 2193, 2196, 2301, \
2304, 2307, 2310, 2316, 2319, 2340, 2346, 2349, 2358, 2361, 2364, \
2367, 2370, 2376, 2379, 2385, 2391, 2394, 2397, 2403, 2406, 2409, \
2415, 2418, 2430, 2436, 2439, 2451, 2457, 2460, 2463, 2469, 2475, \
2478, 2481, 2487, 2490, 2493, 2496, 2508, 2514, 2517, 2538, 2541, \
2547, 2568, 2571, 2574, 2580, 2583, 2586, 2589, 2598, 2601, 2604, \
2607, 2610, 2613, 2619, 2631, 2634, 2637, 2640, 2643, 2649, 2658, \
2670, 2673, 2679, 2685, 2691, 2694, 2697, 2703, 2706, 2709, 2715, \
2718, 2730, 2736, 2739, 2745, 2748, 2751, 2754, 2760, 2763, 2769, \
2781, 2784, 2790, 2793, 2796, 2805, 2814, 2817, 2835, 2841, 2847, \
2850, 2853, 2856, 2859, 2865, 2871, 2874, 2895, 2901, 2904, 2907, \
2910, 2913, 2916, 2931, 2934, 2937, 2940, 2943, 2946, 2958, 2961, \
2964, 2967, 2970, 2973, 2976, 2985, 3012, 3015, 3018, 3021, 3024, \
3027, 3042, 3045, 3048, 3051, 3054, 3057, 3069, 3072, 3075, 3078, \
3081, 3084, 3087, 3096, 3102, 3105, 3108, 3120, 3126, 3129, 3147, \
3150, 3156, 3159, 3162, 3165, 3168, 3174, 3180, 3186, 3189, 3192, \
3195, 3198, 3201, 3204, 3207, 3210, 3216, 3219, 3240, 3246, 3249, \
3258, 3261, 3264, 3267, 3270, 3276, 3279, 3285, 3291, 3294, 3297, \
3402, 3405, 3408, 3417, 3420, 3426, 3429, 3450, 3456, 3459, 3462, \
3465, 3468, 3471, 3480, 3486, 3489, 3492, 3495, 3498, 3501, 3504, \
3507, 3510, 3516, 3519, 3528, 3540, 3546, 3549, 3561, 3564, 3567, \
3570, 3576, 3579, 3582, 3591, 3594, 3597, 3609, 3612, 3615, 3618, \
3621, 3624, 3627, 3642, 3645, 3648, 3651, 3654, 3657, 3672, 3675, \
3678, 3681, 3684, 3687, 3690, 3702, 3705, 3708, 3714, 3720, 3726, \
3729, 3741, 3750, 3756, 3759, 3762, 3765, 3768, 3780, 3786, 3789, \
3792, 3795, 3798, 3801, 3804, 3807, 3810, 3816, 3819, 3825, 3840, \
3846, 3849, 3852, 3861, 3864, 3867, 3870, 3876, 3879, 3891, 3894, \
3897, 3906, 3912, 3915, 3918, 3921, 3924, 3927, 3942, 3945, 3948, \
3951, 3954, 3957, 3960, 3972, 3975, 3978, 3981, 3984, 3987, 4017, \
4023, 4026, 4029, 4032, 4035, 4038, 4053, 4056, 4059, 4062, 4065, \
4068, 4071, 4083, 4086, 4089, 4092, 4095, 4098, 4107, 4125, 4128, \
4137, 4152, 4158, 4167, 4170, 4173, 4176, 4179, 4182, 4185, 4197, \
4203, 4206, 4209, 4215, 4218, 4230, 4236, 4239, 4251, 4257, 4260, \
4263, 4269, 4275, 4278, 4281, 4287, 4290, 4293, 4296, 4302, 4305, \
4308, 4317, 4320, 4326, 4329, 4350, 4356, 4359, 4362, 4365, 4368, \
4371, 4380, 4386, 4389, 4392, 4395, 4398, 4503, 4506, 4509, 4512, \
4518, 4521, 4527, 4530, 4536, 4539, 4560, 4563, 4569, 4572, 4578, \
4581, 4587, 4590, 4593, 4596, 4602, 4605, 4608, 4617, 4620, 4623, \
4629, 4632, 4635, 4638, 4650, 4653, 4659, 4671, 4680, 4683, 4689, \
4692, 4695, 4698, 4701, 4710, 4713, 4716, 4719, 4725, 4728, 4731, \
4752, 4758, 4761, 4782, 4785, 4791, 4803, 4806, 4809, 4812, 4815, \
4821, 4827, 4830, 4836, 4839, 4851, 4857, 4860, 4863, 4869, 4872, \
4875, 4890, 4893, 4896, 4902, 4905, 4908, 4917, 4920, 4923, 4926, \
4932, 4935, 4938, 4950, 4953, 4956, 4962, 4965, 4968, 4971, 4980, \
4983, 4986, 5013, 5016, 5019, 5028, 5031, 5034, 5037, 5043, 5046, \
5049, 5061, 5064, 5067, 5073, 5076, 5079, 5082, 5091, 5094, 5097, \
5103, 5106, 5109, 5124, 5127, 5130, 5136, 5139, 5142, 5148, 5160, \
5163, 5169, 5172, 5178, 5184, 5187, 5190, 5193, 5196, 5208, 5214, \
5217, 5238, 5241, 5247, 5268, 5271, 5274, 5280, 5283, 5286, 5289, \
5298, 5301, 5304, 5307, 5310, 5316, 5319, 5328, 5340, 5346, 5349, \
5361, 5364, 5367, 5370, 5376, 5379, 5382, 5391, 5394, 5397, 5403, \
5406, 5409, 5412, 5418, 5421, 5427, 5430, 5436, 5439, 5460, 5463, \
5469, 5472, 5478, 5481, 5487, 5490, 5493, 5496, 5601, 5604, 5607, \
5610, 5613, 5619, 5628, 5631, 5634, 5637, 5640, 5643, 5649, 5670, \
5673, 5679, 5682, 5691, 5694, 5697, 5703, 5706, 5709, 5712, 5718, \
5721, 5724, 5730, 5736, 5739, 5742, 5748, 5760, 5763, 5769, 5781, \
5784, 5790, 5793, 5796, 5802, 5814, 5817, 5820, 5823, 5826, 5829, \
5832, 5841, 5847, 5862, 5871, 5874, 5892, 5901, 5904, 5907, 5910, \
5913, 5916, 5928, 5931, 5934, 5937, 5940, 5943, 5946, 5961, 5964, \
5967, 5970, 5973, 5976, 5982, 6012, 6015, 6018, 6021, 6024, 6027, \
6039, 6042, 6045, 6048, 6051, 6054, 6057, 6072, 6075, 6078, 6081, \
6084, 6087, 6093, 6102, 6105, 6108, 6120, 6123, 6129, 6132, 6135, \
6138, 6147, 6150, 6153, 6159, 6174, 6180, 6183, 6189, 6192, 6195, \
6198, 6201, 6204, 6207, 6210, 6213, 6219, 6231, 6234, 6237, 6240, \
6243, 6249, 6258, 6270, 6273, 6279, 6285, 6291, 6294, 6297, 6309, \
6312, 6315, 6318, 6321, 6324, 6327, 6342, 6345, 6348, 6351, 6354, \
6357, 6372, 6375, 6378, 6381, 6384, 6387, 6390, 6402, 6405, 6408, \
6417, 6420, 6423, 6429, 6432, 6435, 6438, 6450, 6453, 6459, 6471, \
6480, 6483, 6489, 6492, 6495, 6498, 6501, 6504, 6507, 6510, 6513, \
6519, 6528, 6531, 6534, 6537, 6540, 6543, 6549, 6570, 6573, 6579, \
6582, 6591, 6594, 6597, 6702, 6705, 6708, 6714, 6720, 6723, 6729, \
6732, 6735, 6738, 6741, 6750, 6753, 6759, 6780, 6783, 6789, 6792, \
6795, 6798, 6801, 6804, 6807, 6810, 6813, 6819, 6825, 6831, 6834, \
6837, 6840, 6843, 6849, 6852, 6870, 6873, 6879, 6891, 6894, 6897, \
6903, 6912, 6915, 6918, 6921, 6924, 6927, 6930, 6942, 6945, 6948, \
6951, 6954, 6957, 6972, 6975, 6978, 6981, 6984, 6987, 7014, 7023, \
7026, 7029, 7032, 7035, 7038, 7041, 7053, 7056, 7059, 7062, 7065, \
7068, 7083, 7086, 7089, 7092, 7095, 7098, 7104, 7125, 7128, 7134, \
7140, 7143, 7146, 7149, 7152, 7158, 7164, 7182, 7185, 7194, 7203, \
7206, 7209, 7215, 7218, 7230, 7236, 7239, 7245, 7248, 7251, 7254, \
7260, 7263, 7269, 7281, 7284, 7290, 7293, 7296, 7302, 7305, 7308, \
7314, 7320, 7326, 7329, 7341, 7350, 7356, 7359, 7362, 7365, 7368, \
7380, 7386, 7389, 7392, 7395, 7398, 7401, 7410, 7413, 7416, 7419, \
7425, 7428, 7431, 7452, 7458, 7461, 7482, 7485, 7491, 7503, 7506, \
7509, 7512, 7518, 7521, 7524, 7530, 7536, 7539, 7542, 7548, 7560, \
7563, 7569, 7581, 7584, 7590, 7593, 7596, 7602, 7605, 7608, 7614, \
7620, 7623, 7629, 7632, 7635, 7638, 7641, 7650, 7653, 7659, 7680, \
7683, 7689, 7692, 7695, 7698, 7803, 7806, 7809, 7812, 7815, 7821, \
7824, 7830, 7836, 7839, 7842, 7845, 7851, 7854, 7860, 7863, 7869, \
7890, 7893, 7896, 7902, 7905, 7908, 7914, 7920, 7923, 7926, 7932, \
7935, 7938, 7941, 7950, 7953, 7956, 7962, 7965, 7968, 7980, 7983, \
7986, 8013, 8016, 8019, 8025, 8031, 8034, 8037, 8043, 8046, 8049, \
8052, 8061, 8064, 8067, 8073, 8076, 8079, 8091, 8094, 8097, 8103, \
8106, 8109, 8124, 8127, 8130, 8136, 8139, 8142, 8145, 8154, 8157, \
8160, 8163, 8169, 8172, 8175, 8190, 8193, 8196, 8205, 8214, 8217, \
8235, 8241, 8247, 8250, 8253, 8256, 8259, 8265, 8271, 8274, 8295, \
8301, 8304, 8307, 8310, 8316, 8319, 8325, 8340, 8346, 8349, 8352, \
8361, 8364, 8367, 8370, 8376, 8379, 8391, 8394, 8397, 8403, 8406, \
8409, 8412, 8415, 8421, 8427, 8430, 8436, 8439, 8451, 8457, 8460, \
8463, 8469, 8472, 8475, 8490, 8493, 8496, 8502, 8514, 8517, 8520, \
8523, 8526, 8529, 8532, 8541, 8547, 8562, 8571, 8574, 8592, 8601, \
8604, 8607, 8610, 8613, 8619, 8625, 8631, 8634, 8637, 8640, 8643, \
8649, 8652, 8670, 8673, 8679, 8691, 8694, 8697, 8703, 8706, 8709, \
8712, 8715, 8721, 8724, 8730, 8736, 8739, 8742, 8745, 8751, 8754, \
8760, 8763, 8769, 8790, 8793, 8796, 8901, 8904, 8907, 8910, 8913, \
8916, 8925, 8931, 8934, 8937, 8940, 8943, 8946, 8952, 8961, 8964, \
8967, 8970, 8973, 8976, 9012, 9015, 9018, 9021, 9024, 9027, 9036, \
9042, 9045, 9048, 9051, 9054, 9057, 9063, 9072, 9075, 9078, 9081, \
9084, 9087, 9102, 9105, 9108, 9120, 9123, 9126, 9132, 9135, 9138, \
9147, 9150, 9153, 9156, 9162, 9165, 9168, 9174, 9180, 9183, 9186, \
9201, 9204, 9207, 9210, 9213, 9216, 9231, 9234, 9237, 9240, 9243, \
9246, 9258, 9261, 9264, 9267, 9270, 9273, 9276, 9285, 9306, 9312, \
9315, 9318, 9321, 9324, 9327, 9342, 9345, 9348, 9351, 9354, 9357, \
9360, 9372, 9375, 9378, 9381, 9384, 9387, 9402, 9405, 9408, 9417, \
9420, 9423, 9426, 9432, 9435, 9438, 9450, 9453, 9456, 9462, 9465, \
9468, 9471, 9480, 9483, 9486, 9501, 9504, 9507, 9510, 9513, 9516, \
9528, 9531, 9534, 9537, 9540, 9543, 9546, 9561, 9564, 9567, 9570, \
9573, 9576, 9582, 9603, 9612, 9615, 9618, 9621, 9624, 9627, 9630, \
9642, 9645, 9648, 9651, 9654, 9657, 9672, 9675, 9678, 9681, 9684, \
9687, 9702, 9705, 9708, 9714, 9720, 9723, 9726, 9732, 9735, 9738, \
9741, 9750, 9753, 9756, 9762, 9765, 9768, 9780, 9783, 9786, 9801, \
9804, 9807, 9810, 9813, 9816, 9825, 9831, 9834, 9837, 9840, 9843, \
9846, 9852, 9861, 9864, 9867, 9870, 9873, 9876}
There are 1548 by actual count.
In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.
Offline
Pages: 1