You are not logged in.
Pages: 1
I'm confused about a couple things related to Boolean algebra and expressions and was hoping someone could explain it better than textbook.
1) How does Boolean algebra capture the essential properties of logic operations and set operations?
2) How does the reduction of Boolean expressions to simpler forms resemble the traversal of a tree? What sort of Boolean expression would you end up with at the root of the tree?
Offline
hi rhymin
In boolean algebra the values are True and False.
In logic circuits the values are 0 and 1 (or ON and OFF or zero volts and 5 volts) .... not necessarily the same way round .......
The boolean operations like AND, OR, NOT are also used in logic circuits.
AND is equivalent to Intersection, OR is equivalent to Union and NOT is equivalent to 'the complement of' in set theory.
Trees:
Have a look at
Word Doc:
http://www.google.co.uk/url?sa=t&rct=j& … Tg&cad=rja
http://en.wikipedia.org/wiki/Binary_expression_tree
Your exact question has been asked here (someone else with the same homework?)
http://www.chegg.com/homework-help/ques … r-q3585787
Bob
Children are not defined by school ...........The Fonz
You cannot teach a man anything; you can only help him find it within himself..........Galileo Galilei
Sometimes I deliberately make mistakes, just to test you! …………….Bob
Offline
Pages: 1