You are not logged in.
Pages: 1
Can someone verify if this is the domain of def of the following function?
f(x,y) = Ln [ y / ( x[sup]2[/sup] + y[sup]2[/sup] -1 ) ]
D[sub]f[/sub] = { (x,y) belong to R[sup]2[/sup] : y > 0 , (1-y[sup]2[/sup] ) [sup]1/2[/sup] < x < - (1-y[sup]2[/sup] ) [sup]1/2[/sup] } U { (x,y) belong to R[sup]2[/sup] :
y < 0 , - (1-y[sup]2[/sup] ) [sup]1/2[/sup] < x < (1-y[sup]2[/sup] ) [sup]1/2[/sup] }
Thanks,
"Fundamentally one will never be able to renounce abstraction."
Werner Heisenberg
Offline
Except for (1-y²)[sup]1/2[/sup]< x < -(1-y²)[sup]1/2[/sup] should be
x < -(1-y²)[sup]1/2[/sup] or x>(1-y²)[sup]1/2[/sup] instead, or you may use three sets.
Last edited by George,Y (2006-04-17 16:30:00)
X'(y-Xβ)=0
Offline
Yes, (1-y²)[sup]1/2[/sup]< x < -(1-y²)[sup]1/2[/sup] doesn't make sense, in the solutions guide, it's written :
- (1-y²)[sup]1/2[/sup]< x < (1-y²)[sup]1/2[/sup] , which is definitely wrong!
Perhaps three sets , as you suggested, is more logical.
Last edited by Chemist (2006-04-18 09:30:31)
"Fundamentally one will never be able to renounce abstraction."
Werner Heisenberg
Offline
Hey, I've rechecked this : Plotting y=x , y=-x would show that
D[sub]f[/sub] = { (x,y) belong to R[sup]2[/sup] : y > 0 , (1-y[sup]2[/sup] ) [sup]1/2[/sup] < x < - (1-y[sup]2[/sup] ) [sup]1/2[/sup] } U { (x,y) belong to R[sup]2[/sup] :
y < 0 , - (1-y[sup]2[/sup] ) [sup]1/2[/sup] < x < (1-y[sup]2[/sup] ) [sup]1/2[/sup] }
The domain is on the right bounded by y=x , y=-x. y changes from x to -x. The left part of the domain is bounded by y=x, y=-x, y changes from -x to x.
"Fundamentally one will never be able to renounce abstraction."
Werner Heisenberg
Offline
Pages: 1