Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#26 2016-02-22 01:40:32

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Hi;

I do not agree with .17, I am still looking for a solution.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#27 2016-02-23 15:24:09

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Related  problem  (II)
Inside  a  square  E  of  1*1  there  are  2    rectangles  A  and  B
both  of  1* 1/2   and  move  freely  inside  E . If  a point  is  chosen 
randomly  on  E , find  the  probability  that  the  point  lies  inside 
A  and  B  at  the  same  time  if
(i) A  and  B  are  mutually  "parallel ".
(ii) A  and  B  are  mutually " perpendicular ".

Offline

#28 2016-02-23 18:48:03

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Hi;

Parallel to E also?


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#29 2016-02-24 16:36:40

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

Once  you  put  either  A  or  B  into  E , you  cannot  move  it  to  any 
position  non-parallel  to  E , otherwise  you  just  can't  put  it  into  E .
Thus  A  or  B  must  be  parallel  to  E .
In  fact  for  a  rectangle  with  1 unit * x unit  which  can  be  put  into  E
in  a  non-parallel  position (  with  1  side   parallel  to  a  diagonal  of  E ),
the  greatest  value  of  x  is  about  0.447 .

Offline

#30 2016-02-24 18:11:03

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Okay, thanks for the info.

To take a step back the exact answer for the 3 triangle point problem is 13 / 120.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#31 2016-02-26 23:05:07

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

The  value  13/120  is  quite  near  1/9 = 13/ 117 .

Offline

#32 2016-03-10 17:54:47

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Related  problem  (II)
Inside  a  square  E  of  1*1  there  are  2    rectangles  A  and  B
both  of  1* 1/2   and  move  freely  inside  E . If  a point  is  chosen
randomly  on  E , find  the  probability  that  the  point  lies  inside
A  and  B  at  the  same  time  if
(i) A  and  B  are  mutually  "parallel ".
(ii) A  and  B  are  mutually " perpendicular ".

Can either side ( long or short ) of either smaller triangle be parallel? For instance could they be oriented like this

1VVSdvs.png


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#33 2016-03-10 21:22:08

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

For  the  2  smaller  rectangles  ( not  triangles ) to  be  parallel ,
I  mean  that  they  are  in  the  position  like  a " = "  sign .
For  they  to  be  perpendicular , I  mean  that  they  are  in  the
position  like  a " τ " sign .
Thus  in  your  diagram  they  should  be  mutually  perpendicular .

Last edited by mr.wong (2016-03-10 21:25:25)

Offline

#34 2016-03-11 05:08:42

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

For mutually perpendicular it is easy, I would say it is 1 / 4. This is easy to prove.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#35 2016-03-11 15:29:16

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

You  are  right ! For  the  case  of  perpendicular , the 
answer  is  intuitively  to  be  1/4 .
For  them  to  be  parallel , the  answer  will  be  just  the  same 
as  the  problem  involving  2  segments .(i.e. P = 1/3 )

Last edited by mr.wong (2016-03-14 16:00:28)

Offline

#36 2016-03-11 20:22:08

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Hi;

Then we are done?


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#37 2016-03-11 21:56:40

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

That's  right !
Let  us  return  to  #1 . If  the  condition  " keep  parallel "  is
not  necessary , will  the  result  be  P = 1/4 * 1/4 = 1/16 ?

Offline

#38 2016-03-19 16:58:02

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Related  problem (III)

Inside  a  triangle  E  there  is  a  smaller  triangle  X  formed  by  joining
the  mid-points  of  the  3  sides  of  E  , and  stays  fixed  in  its  position .
Another  similar  triangle  A  , with  lengths  of  sides  being  1/2  of  that
of  E  and  parallel  to  E   with  corresponding  vertices  facing  the  same
direction ,  can  move  freely  but   parallelly  inside  E  .
If  a  point  is  chosen  randomly  on  E , find  the  probability  that  the
point  lies  inside  A  and  X  at  the  same  time .

Last edited by mr.wong (2016-03-19 17:00:26)

Offline

#39 2016-03-26 19:09:36

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Hi;

I am getting a probability  of about 1 / 8.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#40 2016-03-27 21:01:35

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

You  get  P = about 1/8 , since  P of  the  point  lies  within  X  = 1/4 .
Does  this  mean  that  P  of  the  point   lies  within  A  = about  1/2 ?
I  have  not  got  the  answer  by  myself  yet . If  I  try  to  solve  it  with
solid  geometry , I  need  to  find  the  volume  of  a  polyhedron  consisting 
of  quadratic  curve , and  then  its  average  height , but  I  have  no  confidence
to  do  so .
Let  us  return  to  the  3  triangles  problem  at  # 6 , with  reference  of 
your  diagram  at  # 13   . If  one  of  the smaller   Δ  , say  B , is  fixed
with  its  vertice  corresponding  the  right  angle , at  coordinate
at  either  (i) (0,0)  or  (ii) (1/2, 0)  or  (iii) ( 0, 1/2)  , while  Δ A 
is  movable , will  P  all  = 1/6 ?  [ Where  the  coordinates  of
the  3  vertex  of  the  large Δ  E  are  pre-set  at  ( 0,0)  ,( 1, 0) and  ( 0,1) ]

Offline

#41 2016-03-27 21:10:19

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Hi;

I am working on another method but unfortunately it does not yield the same answer of 1 / 8, so I will keep trying.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#42 2016-04-01 01:03:54

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

I  don't  know  how  to  add  a  diagram  as  affix  to  my  post !

Offline

#43 2016-04-01 02:08:15

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

You must first upload it to http://imgur.com/


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#44 2016-04-01 23:18:16

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

I  mean  a  diagram  generated  with  Geogebra .

Offline

#45 2016-04-02 00:06:12

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Use graphics view to clipboard from the File ->Export menu. Or, you can take a screenshot and save it as a jpeg.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#46 2016-04-02 22:56:19

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

I  hope  you  can  see  the  diagram !

f4d6769.png


Related  problem (III) ( B )

Inside  a  triangle  E  there  is  a  smaller  triangle  X  formed  by  joining
the  mid-points  of  the  3  sides  of  E  , and  stays  fixed  in  its  position .
Another  similar  triangle  A  , with  lengths  of  sides  being  1/2  of  that
of  E  and  parallel  to  E   with  corresponding  vertices  facing  the  same
direction ,  can  move  freely  but   parallelly  inside  E  .
If  a  point  is  chosen  randomly  on  X , find  the  probability  that  the
point  also  lies  inside  A  .

Procedure  to  solve  this  problem  with  3-dimensional  geometry :
Let  VA  denotes  the  right - angle  vertex  of  triangle  A , with 
co-ordinate  lies  within  the  triangle  PBA . ( with  co-ordinates  (0,0) ,
(4,0)  and  (0,4) )  For  various  locations  of  VA , the  area  of  overlapped
portion  of  triangles  A  and  X  can  be  found  experimentally .
E.g. , when  VA = (0,0)  or  (4,0)  or  (0,4) ( at  point  P , B  and  A resp ), the  CA ( common  area )  all = 0 ; if  VA  moves  to  the  point  S (2,2) ,
then   common  portion  will  be  the  square  SC , with  area  4  units .
Basically  we  should  collect  6  co-ordinates  of  VA , besides  the  4
points  stated , 2  more  co-ordinates  (2,0) and (0,2)  should  be  tackled .
After  we  have  collected  certain  data , we  try  to  illustrate  the  relation
between  the  CA  and  the  various  co-ordinates  of  VA  with  a  3-dimensional  diagram  : x-axis  will  be  the  line  PB ,  y-axis  will
show  the  line  PA , while   z-axis  will  show  the  values  of  CA .
If  the  curves  formed  by  joining  the  various  points  of  CA  seem
to  be  linear ( straight  lines  ) , then  it  will  be  ok  and  we  shall  continue
to  calculate  the  volume  of  the  corresponding  polyhedron , and  then 
the  average  height  , representing  the  average  value  of  CA . Divided  this  value  by  the  area  of  triangle  ABC , the  probability  required  will  be  obtained .
Otherwise  we  have  to  collect  more  data , i.e. more  values  of  CA  corresponding  to  more  locations  of  VA  inside  the  triangle  PBA . If 
the  curves  obtained  shown  to  be  non-linear ( e.g. quadratic )  , to  calculate  the  corresponding  volume  we  need  to  use  integration  or  even  multiple  integration .

Offline

#47 2016-04-03 01:26:20

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Hi;

I can see the diagram after enclosing it in img tags. Also, the intersection of X and A is usually not a square.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#48 2016-04-03 16:00:31

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

You  are  right  , the  intersection  of  X  and  A  is  usually  not  a  square  .
But  we    are  only  interested  in  their  common  area . Sometimes  we  have  to
count  the  area  part  by  part , thus  a  geometric  diagram  with  co-ordinates 
will  be  much  helpful .
Perhaps  in  the  3-dimensional  diagram  being  a  polyhedron  with  x  and  y -axis 
denoting  various  co-ordinates  of  VA , while  z-axis  denoting  the  common  area ,
the  corresponding  values  x , y  and  z  may  always  be  represented  by  the  equation :
z = axx + bx + cyy + dy + exy + k
while  the  values  of  the  coefficients  a , b , c , d , e  and  k  may  be  found  if  we  have
collected  enough  data  and  solving  the  corresponding  set  of  equations . In  fact  the
above  equation  represents  the  surface  covering  the  polyhedron  ,  using  multiple 
integration  we  may  find  the  volume  of  the  polyhedron  directly  without  cutting  it
to   appropriate  portions  and  find  the  corresponding  volumes  by  solid  geometry .

Offline

#49 2016-04-05 23:49:31

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

After  collecting  enough  data  and  solving  the  corresponding
  coefficients  , we  obtain  the  following  equation  : 
z= 1/2 x - xx + 1/2 y -yy - xy
   = 1/2 ( x-2xx + y - 2yy - 2xy )
( What  will  be  the  maximum  value  of  z  for 
0 ≤ x≤1/2  and  0≤y≤1/2 ? ) (  in  fact  1/2
means  1/2  of  length  of  8 units = 4 units  as
in  the  diagram  shown  in  # 46 .)

It's  time  for  us  to  draw  a  3-dimensional 
diagram  . But  it  is  difficult  for  me  to  draw  a 
diagram  consisting  of  non-linear  curves  using  the 
Geogebra , therefore  I  can  only  describe
the  diagram  in  words .
The  base  of  the  polyhedron  is  a  right -angle 
triangle  PQR  with  PQ = QR = 1/2 un.
For  y=0 ,(i.e. the x-axis ) the  above  equation
becomes  z=1/2 ( x-2xx) , being  a  quadratic
curve  over  QR . Similarly  for  x=0 ,
z=1/2 ( y-2yy) ,being  a  quadratic  curve  over
QP .
For  x+y = 1/2 , the  equation  becomes 
z=1/2(1/2 - 2xx-2yy-2xy)
= 1/4 -xx-yy-xy
also  being  a  quadratic  curve  over PR .
( The  above  3  curves  all  have  maximum 
values  = 1/16  at  the  mid-points  of  PQ , QR
and PR .)
Can  anyone  please  find  the  volume  of  the
polyhedron  using  integration  for  me ? Thanks
in  advance !

Offline

#50 2016-04-06 03:03:27

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Hi;

If your equation looks like this,

it is easy to maximize z subject to the constraints 0 ≤ x≤1/2  and  0≤y≤1/2

z is at a maximum when x = 1 / 6 and y = 1 / 6 and the maximum value is 1 / 12


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

Board footer

Powered by FluxBB