Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#76 2016-06-16 17:21:34

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

I did 3 moving squares and got 1 / 16 as predicted.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#77 2016-06-17 15:42:13

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

I  wonder  why  thickhead  can  get  the  formula  for  n  squares  directly 
with  double  integration  while  proved  by  mathematical  induction  is  not 
necessary .

Offline

#78 2016-06-17 15:44:13

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

I did not see where that was done, can you point the post out?


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#79 2016-06-17 21:25:52

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  bobbym ,

It  was  in  # 74 .

Offline

#80 2016-06-18 02:37:45

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: geometric probability ---- squares

Hi;

Okay thanks. I did not see that one.


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#81 2016-06-21 16:26:40

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

thickhead wrote:
mr.wong wrote:

Thanks  bobbym , you  are  right .

By  formula , we  have  the  probability  of  the  point  lies
within  the  axis  of 1  side ( say  horizontal  side ) of  the
common  portion  of  A  and  B  to  be  1/3 . Similarly ,
for  the  vertical  side , P  also  =  1/3 . Thus  combinely
P  of  the  point  lies  within  both  A  and  B  will  be  1/9 .
Will  the  answer  be  the  same  for  other  polygons , say
rhombus  under  similar  conditions ?

Could you elaborate on the formula?


Hi  thickhead ,

Previously  you  have  asked  about  the  formula  I  used  to  find  the
probability  involving  squares . You  can  find  it  in  the  thread 
"geometric  probability ---segments "  # 22 .

Offline

#82 2016-06-29 18:11:52

thickhead
Member
Registered: 2016-04-16
Posts: 1,086

Re: geometric probability ---- squares

mr.wong wrote:

Related  problem ( I ) :  To  find  the  volume  of  a  polyhedron

Let   X  denotes  a  polyhedron  with  6  vertices  PQRSTU ,
11  sides  and  7  faces :
(1)  base  PQRS  being  a  square  with  sides  1/2  unit .
(2) Δ PTS  with  PT = 1/12 unit ( in  fact  sq.unit)
     where  TP  is  perpendicular  to  the  base .
(3) Δ PTQ  being  congruent  to  Δ PTS  .
(4) Δ RUQ  with  RU = 1/8  unit  ( or  sq.unit )
     where  RU  is  perpendicvlar  to  the  base .
(5) Δ RUS  being  congruent  to  Δ RUQ .
(6) Δ TQU .
(7) Δ TSU  being  congruent  to Δ TQU .       

How  to  find  the  volume  of  X ?

Hi mr.wong,
Did you get this volume as  5/288 ?
http://onlinemschool.com/math/assistance/vector/pyramid_volume/
use this to calculate pyramid volume in proper fractions .
you can use the following for calculating polyhedron volume directly but the answer will be in decimals.
http://www.staff.amu.edu.pl/~pawel/volume/calculator.html

Last edited by thickhead (2016-06-29 18:12:23)


{1}Vasudhaiva Kutumakam.{The whole Universe is a family.}
(2)Yatra naaryasthu poojyanthe Ramanthe tatra Devataha
{Gods rejoice at those places where ladies are respected.}

Offline

#83 2016-06-30 16:06:25

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Thanks  thickhead ,

The  answer  5/288  seems  to  be  incorrect .
In  fact  the  aim  of  finding  the  volumes  of  those 
polyhedrons  is  to  provide  a  method  to  solve  the 
problem  involving  2  moving  triangles  but  I  failed .
Thus  all  the  effort  were  wasted  and  I  don't  think   
I  will  spend  time  dealing  with  the  polyhedron  any 
more .

Offline

#84 2016-07-05 15:30:06

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Related  problem :

Inside  a  square  E  with  co-ordinates  ( 0,0) , (2,0), (2,2) and 
(0,2)  there  are  2  smaller  squares  A  and  B  both  with  length  of  sides  being  1  unit  and  parallel  with  E . A  can  move  freely  and  uniformly  inside  E  but  keep  parallel  with  E  during  moving ;  while  B   stays  fixed  in  E  with  co-ordinate  of  its  south-west  vertex  being  ( x ,y ) . A  point  is  chosen  randomly  on  E  .
(1) Find  the  probability  that  the  point  lies  inside  A  and  B 
at  the  same  time  .
(2)  If  the  probability  = 1/9 , solve  x  and  y  .

Offline

#85 2016-07-05 21:03:43

thickhead
Member
Registered: 2016-04-16
Posts: 1,086

Re: geometric probability ---- squares

Last edited by thickhead (2016-07-08 03:01:55)


{1}Vasudhaiva Kutumakam.{The whole Universe is a family.}
(2)Yatra naaryasthu poojyanthe Ramanthe tatra Devataha
{Gods rejoice at those places where ladies are respected.}

Offline

#86 2016-07-06 16:45:32

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  thickhead ,

Why  P  is  not  symmetric  in  x  and  y ?
For  x = y  can  the  results  be  expressed  in  fractions  ?
Should  there  be  totally  4  answers  ( or  more ? ) for (x , y )  ?
We  know  that  for  (x , y ) = ( 0,0) , ( 1,0) , (0,1) or (1,1)
P  will  have  smallest  value  while  for (x,y) = (1/2,1/2) 
P  will  have  greatest  value  . ( This  is  the  case  when  B  is 
located  at  the  centre  of  E .)  1/9  should  be  the  average  value 
of  P .

Offline

#87 2016-07-06 18:24:24

thickhead
Member
Registered: 2016-04-16
Posts: 1,086

Re: geometric probability ---- squares

P is symmetric in x and y. You replace x by y and y by x , the formula remains the same.You get infinite points (x,y) for a given value of P  say 1/9. The average works out to be 4/27.that is because we integrate the average probability when south west point is at (x,y). This means the average of average which is not correct.

Last edited by thickhead (2016-07-07 20:47:28)


{1}Vasudhaiva Kutumakam.{The whole Universe is a family.}
(2)Yatra naaryasthu poojyanthe Ramanthe tatra Devataha
{Gods rejoice at those places where ladies are respected.}

Offline

#88 2016-07-07 15:52:26

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: geometric probability ---- squares

Hi  thickhead ,

Your  formula  in  #85  seems  not  symmetric  in  x  and  y .
If  P = 1/9 , I  think  there  should  be  4  answers  for ( x, y) .
In  fact  the  aim  of  this  related  problem  is  to  find  whether  in  the 
problem  involving  2  moving  squares , 1  of  them   can  be  replaced 
by  a  fixed  square  with  same  length  and  yields  the  same  answer . 
( of  course  the  location  of  the  fixed  square  cannot  be  random .)

Offline

#89 2016-07-08 05:30:26

thickhead
Member
Registered: 2016-04-16
Posts: 1,086

Re: geometric probability ---- squares

The maximum value of the probability 9/64 occurs  at(1/2,1/2)  For P=1/9

x	                y1   	       y2
0.896746024	     0.5	       0.5
0.788675135	     0.788675135  	0.211324865
0.7	                0.852167445	0.147832555
0.6	                0.886522185	0.113477815
0.5	                0.896746024	0.103253976
0.4	                0.886522185	0.113477815
0.3	                0.852167445	0.147832555
0.2	                0.776765834	0.223234166
0.211324865	       0.788675135  	0.211324865
0.11	                0.581593877	0.418406123
0.103253976	          0.5          0.5

{1}Vasudhaiva Kutumakam.{The whole Universe is a family.}
(2)Yatra naaryasthu poojyanthe Ramanthe tatra Devataha
{Gods rejoice at those places where ladies are respected.}

Offline

#90 2016-07-08 22:31:27

thickhead
Member
Registered: 2016-04-16
Posts: 1,086

Re: geometric probability ---- squares


{1}Vasudhaiva Kutumakam.{The whole Universe is a family.}
(2)Yatra naaryasthu poojyanthe Ramanthe tatra Devataha
{Gods rejoice at those places where ladies are respected.}

Offline

Board footer

Powered by FluxBB