Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#26 2016-10-16 16:13:27

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: Probability ---- consecutive individuals

Hi;


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#27 2016-10-16 21:52:53

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: Probability ---- consecutive individuals

Hi  bobbym ,

Your  results  will  be  accepted . I  wonder  why  you   
provided  2  approximate  answers  instead  of  2  more  exact 
ones  as   
(1) 1681/57600
(2)$ 0.43

Offline

#28 2016-10-16 22:14:50

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: Probability ---- consecutive individuals

Hi;

We work in a specific way. First comes a simulation always. With my hardware I can get 2 or maybe 3 accurate digits after the decimal. Of course, this is only a good estimate. If there is a reason to I will seek an exact answer but if I fail I have the simulation answer standing by. Often, this will be enough and is much, much better than no answer at all.

It is sort of a sin, to have no answer, not even a guess.

http://www.mathisfunforum.com/viewtopic … 08#p302808


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#29 2016-10-18 21:53:01

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: Probability ---- consecutive individuals

Related  Problem  (4) 

100  soldiers  formed  a  10 *10  matrix . After  a  battle 
those  soldiers  at  one  side  of  a  diagonal  ( not  inclusive ) 
were  all  killed ,  thus  remaining  a  triangular  semi-matrix 
enclosed  by  10  soldiers  at  each  side .
General  A  chose  randomly  from  it  a  similar  shape 
triangular   semi-matrix   enclosed  by   5  soldiers  at  each 
side  and  gave  each  soldier  inside  1  dollar .
General  B  did  the  same  thing . ( The  2  semi - matrices 
must  be  parallel  with  the  big  one .)
If  a  soldier  was  chosen  randomly  from  the  whole ,
find  the  probability  that  he  received  2  dollars .

Offline

#30 2016-10-27 03:34:34

thickhead
Member
Registered: 2016-04-16
Posts: 1,086

Re: Probability ---- consecutive individuals

mr.wong wrote:

Related  Problem  (3)

100  soldiers  formed  a  10 * 10  matrix .  General  A  chose  randomly  a  5*5  sub-matrix  contained  in  it   
and  gave  each  soldier  inside  1  dollar .  General  B  chose  randomly  a  3*3  sub-matrix  contained  in  it 
and  gave  each  soldier  inside  2  dollars . ( The  2  sub-matrices  must  be  parallel  with  the  big  one . ) 
If  a  soldier  was  chosen  randomly  from  the  whole , find 
(1)  The  probability  that  he  received  3  dollars .
(2)  The  expected  amount  he  received .

Hi mr.wong,
I tried to put it on excel.Each cell consists of submatrices through the point
5 point submatrix
1                                       
2    2                                   
3    4    3                               
4    6    6    4                           
5    8    9    8    5                       
5    10    12    12    10    5                   
4    8    12    13    12    8    4               
3    6    9    12    12    9    6    3           
2    4    6    8    10    8    6    4    2       
1    2    3    4    5    5    4    3    2    1    sum=325
the probability of getting 1 dollar=325/55/21=0.281385281

3 point submatrices
1                                       
2    2                                   
3    4    3                               
3    5    5    3                           
3    5    6    5    3                       
3    5    6    6    5    3                   
3    5    6    6    6    5    3               
3    5    6    6    6    6    5    3           
2    4    5    5    5    5    5    4    2       
1    2    3    3    3    3    3    3    2    1    sum=216
The probability of getting 2 dollars =216/55/36=0.109090909

product of the 2 matrices
1                                       
4    4                                   
9    16    9                               
12    30    30    12                           
15    40    54    40    15                       
15    50    72    72    50    15                   
12    40    72    78    72    40    12               
9    30    54    72    72    54    30    9           
4    16    30    40    50    40    30    16    4       
1    4    9    12    15    15    12    9    4    1    sum=1533
So the probability of getting 3 dollars =1533/55/21/36=0.036868687
Expectation=0.281385281*1+0.109090909*2=0.4995671
Filling the cells is a difficult task and I hope it is without errors.

Last edited by thickhead (2016-10-27 16:16:25)


{1}Vasudhaiva Kutumakam.{The whole Universe is a family.}
(2)Yatra naaryasthu poojyanthe Ramanthe tatra Devataha
{Gods rejoice at those places where ladies are respected.}

Offline

#31 2016-10-27 04:21:09

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: Probability ---- consecutive individuals

Are you sure you are working on Problem 3?

thickhead wrote:
mr.wong wrote:

Related  Problem  (3)

100  soldiers  formed  a  10 * 10  matrix .  General  A  chose  randomly  a  5*5  sub-matrix  contained  in  it   
and  gave  each  soldier  inside  1  dollar .  General  B  chose  randomly  a  3*3  sub-matrix  contained  in  it 
and  gave  each  soldier  inside  2  dollars . ( The  2  sub-matrices  must  be  parallel  with  the  big  one . ) 
If  a  soldier  was  chosen  randomly  from  the  whole , find 
(1)  The  probability  that  he  received  3  dollars .
(2)  The  expected  amount  he  received .


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#32 2016-10-27 04:46:42

thickhead
Member
Registered: 2016-04-16
Posts: 1,086

Re: Probability ---- consecutive individuals

Sorry. I exchanged the dollars. Now it stands corrected.

Last edited by thickhead (2016-10-27 04:47:11)


{1}Vasudhaiva Kutumakam.{The whole Universe is a family.}
(2)Yatra naaryasthu poojyanthe Ramanthe tatra Devataha
{Gods rejoice at those places where ladies are respected.}

Offline

#33 2016-10-27 15:42:06

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: Probability ---- consecutive individuals

Hi  thickhead ,

I  think  you  have  mixed  Related  Problem  (3)  with  Related  Problem  (4)  .
But  your  answer  may  be  for  a  Related  Problem  (5)  !

Offline

#34 2016-10-27 16:25:09

thickhead
Member
Registered: 2016-04-16
Posts: 1,086

Re: Probability ---- consecutive individuals

No. I am referring to problem(3). I have not come upto problem (4) and (5)
There seems to be mistake in my first table.
Average expectation for 1 dollar =15/55=0.272727273 whereas I got 0.281385281. I should have got 315 as total in my first table.My second table is correct.
Average expectation overall =(15+12)/55=0.490909091
as captain A distributed 15 dollars and captain B 12 dollars.


{1}Vasudhaiva Kutumakam.{The whole Universe is a family.}
(2)Yatra naaryasthu poojyanthe Ramanthe tatra Devataha
{Gods rejoice at those places where ladies are respected.}

Offline

#35 2016-10-27 17:16:28

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

Re: Probability ---- consecutive individuals

There is no problem 5...


In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

#36 2016-10-28 01:00:56

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: Probability ---- consecutive individuals

Hi  thickhead ,

In  Problem (3)  the  2  small  sub- matrices  are  squares  of  5*5  and  3*3 
respectively  .
While   in  Problem (4)  the  2  small  semi - matrices  are  triangular , both
with  5  soldiers  at  each  side .
Your  answer  may  fit  a  proposed  Problem  (5)  with  2  small  triangular 
semi-matrices  with  5  and  3  soldiers  at  each  side  respectively .

Hi  bobbym ,

The  Problem (5)  is  still  under  proposal  .

Offline

#37 2016-10-28 02:18:23

thickhead
Member
Registered: 2016-04-16
Posts: 1,086

Re: Probability ---- consecutive individuals

Sorry,mr.wong,
I  meant problem no.(4) but I don't know how I quoted your problem (3)
Evidently the triangular matrix I gave points  to problem (4) Why do you think it is no.(5)?.
I fixed the error in my layout.The maximum I could get with logic was this.
1                                   
2    2                               
3    4    3                           
4    6    6    4                       
5    8    9    8    5                   
5    9    11    11    9    5               
4    8    11    13    11    8    4           
3    6    9    11    11    9    6    3       
2    4    6    8    9    8    6    4    2   
1    2    3    4    5    5    4    3    2    1
But total is 316, one more than the correct one.Then I simulated 21 submatices in excel sheet at proper places.and superposed all.
1                                   
2    2                               
3    4    3                           
4    6    6    4                       
5    8    9    8    5                   
5    9    11    11    9    5               
4    8    11    12    11    8    4           
3    6    9    11    11    9    6    3       
2    4    6    8    9    8    6    4    2   
1    2    3    4    5    5    4    3    2    1
This give s a total of 315.the product of 2 sub matrices is
1                                   
4    4                               
9    16    9                           
12    30    30    12                       
15    40    54    40    15                   
15    45    66    66    45    15               
12    40    66    72    66    40    12           
9    30    54    66    66    54    30    9       
4    16    30    40    45    40    30    16    4   
1    4    9    12    15    15    12    9    4    1
with a total of 1476.
the probability of getting 3 dollars is 1476/55/21/36=0.035497835


{1}Vasudhaiva Kutumakam.{The whole Universe is a family.}
(2)Yatra naaryasthu poojyanthe Ramanthe tatra Devataha
{Gods rejoice at those places where ladies are respected.}

Offline

#38 2016-10-28 04:29:39

thickhead
Member
Registered: 2016-04-16
Posts: 1,086

Re: Probability ---- consecutive individuals

simulation for prob no.(3) yields
Captain A

1	2	3	4	5	5	4	3	2	1
2	4	6	8	10	10	8	6	4	2
3	6	9	12	15	15	12	9	6	3
4	8	12	16	20	20	16	12	8	4
5	10	15	20	25	25	20	15	10	5
5	10	15	20	25	25	20	15	10	5
4	8	12	16	20	20	16	12	8	4
3	6	9	12	15	15	12	9	6	3
2	4	6	8	10	10	8	6	4	2
1	2	3	4	5	5	4	3	2	1

Captain B

1    2    3    3    3    3    3    3    2    1
2    4    6    6    6    6    6    6    4    2
3    6    9    9    9    9    9    9    6    3
3    6    9    9    9    9    9    9    6    3
3    6    9    9    9    9    9    9    6    3
3    6    9    9    9    9    9    9    6    3
3    6    9    9    9    9    9    9    6    3
3    6    9    9    9    9    9    9    6    3
2    4    6    6    6    6    6    6    4    2
1    2    3    3    3    3    3    3    2    1

Combined

1    4    9    12    15    15    12    9    4    1
4    16    36    48    60    60    48    36    16    4
9    36    81    108    135    135    108    81    36    9
12    48    108    144    180    180    144    108    48    12
15    60    135    180    225    225    180    135    60    15
15    60    135    180    225    225    180    135    60    15
12    48    108    144    180    180    144    108    48    12
9    36    81    108    135    135    108    81    36    9
4    16    36    48    60    60    48    36    16    4
1    4    9    12    15    15    12    9    4    1

Cell total =6724
mr.wong's results perfectly match.
maximum probability of getting 3 dollars=225/576

Last edited by thickhead (2016-10-28 05:07:38)


{1}Vasudhaiva Kutumakam.{The whole Universe is a family.}
(2)Yatra naaryasthu poojyanthe Ramanthe tatra Devataha
{Gods rejoice at those places where ladies are respected.}

Offline

#39 2016-10-28 16:44:04

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: Probability ---- consecutive individuals

Hi  thickhead  ,

Thanks  much  for  your  laborious  work ! 
I  shall  reserve  your  result  in  #  37  for  the  proposed  Problem  (5) .

Offline

#40 2016-10-28 18:12:10

thickhead
Member
Registered: 2016-04-16
Posts: 1,086

Re: Probability ---- consecutive individuals

Hi mr.wong,
O.K. I understood the problem (4) now.

Last edited by thickhead (2016-10-28 20:33:30)


{1}Vasudhaiva Kutumakam.{The whole Universe is a family.}
(2)Yatra naaryasthu poojyanthe Ramanthe tatra Devataha
{Gods rejoice at those places where ladies are respected.}

Offline

#41 2016-10-28 20:44:57

thickhead
Member
Registered: 2016-04-16
Posts: 1,086

Re: Probability ---- consecutive individuals

Problem No.4
1                                   
4    4                               
9    16    9                           
16    36    36    16                       
25    64    81    64    25                   
25    81    121    121    81    25               
16    64    121    144    121    64    16           
9    36    81    121    121    81    36    9       
4    16    36    64    81    64    36    16    4   
1    4    9    16    25    25    16    9    4    1
Total=2331
probability of getting 2 dollars=2331/(55*21*21)=111/1155=0.096103896

Last edited by thickhead (2016-10-29 00:23:34)


{1}Vasudhaiva Kutumakam.{The whole Universe is a family.}
(2)Yatra naaryasthu poojyanthe Ramanthe tatra Devataha
{Gods rejoice at those places where ladies are respected.}

Offline

#42 2016-10-28 23:02:21

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: Probability ---- consecutive individuals

Hi  thickhead ,

Have  you  omitted  a " 25 " at  the  5th row   ,  a  " 25"  at  the 
6th  row  and  a  " 16 " at the  7th  row  in  the  table  at  #  41 ?
Also  for  the  probability  should  the  denominator  be   55*21*21  ?

Offline

#43 2016-10-29 00:25:35

thickhead
Member
Registered: 2016-04-16
Posts: 1,086

Re: Probability ---- consecutive individuals

I don't know how I missed them but the total is not affected. As for 36 I was still in the mood of 3x3 submatrix. Now it stands corrected.


{1}Vasudhaiva Kutumakam.{The whole Universe is a family.}
(2)Yatra naaryasthu poojyanthe Ramanthe tatra Devataha
{Gods rejoice at those places where ladies are respected.}

Offline

#44 2016-10-29 16:05:33

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: Probability ---- consecutive individuals

Thanks  thickhead  ,

Now  it  seems   if  the  no.  of  points  of  the  big  triangle  with  the  2  half - sized 
small  triangles  trend  to  ∞ , then  the  probability  will  trend  to  1/10  .

Offline

#45 2016-10-31 20:20:39

mr.wong
Member
Registered: 2015-12-01
Posts: 252

Re: Probability ---- consecutive individuals

It  may  be  ambiguous  to  define  what  is   half - sized  for  a 
matrix ( no matter  a  square  matrix  or  a  triangular  semi-matrix )   
with  n  dots  at  each  side . ( Assuming  that  the  distance  between 
the  dots  are  fixed  and  the  dimension  of  the  dots  may  be  neglected . ) 
For  n  to  be  even , readily  half - sized  means   the  one  with  n / 2   dots .
But  for  n  to  be  odd , quite  probably  we  shall  mean  a  sub - matrix 
with  [ n/2 ] + 1  = ( n + 1 ) / 2  dots  to  be  half - sized  so  that  its  length 
between  the  end  points  will  be  1/2  of  that  of  the  big  one .
For  example  for  a  matrix  with  3  dots  at  each  side  , a  half - sized 
sub - matrix  will  be  referred  to  one  with  2  dots  at  each  side .

Offline

Board footer

Powered by FluxBB