You are not logged in.
I'm currently researching the correlation of the area on a Mobius strip and the volume enclosed by a Klein's bottle (which is the 3-dimensional analogue of a Mobius strip) even though it is seen as an non-orientable surface, like how topologists see the sphere as a 2-dimensional surface that happens to enclose a volume.
Using the area being that of two rectangels (2LW) of length L and width W (ignoring the obnoxius differential geometry) this was a bit too easy as I quickly got the volume of a Klein's bottle to be 8LW²/pi.
To extend the topic I'm planning to generalize this into higher dimensions, and then wonder how the 4-dimensional analogy would look like, whether it would be some sort of sphere iterating over 2L to form another doughnut looking shape or if it would be anything else.
I think it’s called a stereoscopic Klein bottle.
Me, or the ugly man, whatever (3,3,6)
Offline
Thanx for sharing such useful post keep it up advertising link removed
Offline