You are not logged in.
Pages: 1
Suppose f:[0,1]->R is continuous, f(0)>0, f(1)=0.
Prove that there is a X0 in (0,1] such that f(Xo)=0 & f(X) >0 for 0<=X<Xo (there is a smallest point in the interval [0,1] which f attains 0)
Since f is continuous, then there exist a sequence Xn converges to X0, and f(Xn) converges to f(Xo).
Since 0<=(Xo-1/n)<Xo
Can I just let Xn=Xo-1/n so that 0<=Xn<Xo
So when Xn->Xo, f(Xn)->f(Xo)
I wasn't convinced enough this is the right approach...
Offline
Last edited by Alg Num Theory (2019-05-20 01:57:35)
Me, or the ugly man, whatever (3,3,6)
Offline
Pages: 1