Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 2022-04-21 12:57:24

666 bro
Member
From: Flatland
Registered: 2019-04-26
Posts: 706

Probability theory

the weak law of large numbers and the law of large numbers are different concepts ?
what are the simiarities between them?

Last edited by 666 bro (2022-04-21 12:57:49)


"An equation for me has no meaning, unless it expresses a thought of God"- Srinivasa ramanujan

Offline

#2 2022-04-21 17:18:04

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 48,403

Re: Probability theory

Law on Numbers

In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed.

The LLN is important because it guarantees stable long-term results for the averages of some random events. For example, while a casino may lose money in a single spin of the roulette wheel, its earnings will tend towards a predictable percentage over a large number of spins. Any winning streak by a player will eventually be overcome by the parameters of the game. Importantly, the law applies (as the name indicates) only when a large number of observations is considered. There is no principle that a small number of observations will coincide with the expected value or that a streak of one value will immediately be "balanced" by the others (see the gambler's fallacy).

It is also important to note that the LLN only applies to the average. Therefore, while

other formulas that look similar are not verified, such as the raw deviation from "theoretical results" :

not only does it not converge toward zero as n increases, but it tends to increase in absolute value as n increases.

Weak law

Simulation illustrating the law of large numbers. Each frame, a coin that is red on one side and blue on the other is flipped, and a dot is added in the corresponding column. A pie chart shows the proportion of red and blue so far. Notice that while the proportion varies significantly at first, it approaches 50% as the number of trials increases.
The weak law of large numbers (also called Khinchin's law) states that the sample average converges in probability towards the expected value

(law 2)

That is, for any positive number ε,

Interpreting this result, the weak law states that for any nonzero margin specified (ε), no matter how small, with a sufficiently large sample there will be a very high probability that the average of the observations will be close to the expected value; that is, within the margin.

As mentioned earlier, the weak law applies in the case of i.i.d. random variables, but it also applies in some other cases. For example, the variance may be different for each random variable in the series, keeping the expected value constant. If the variances are bounded, then the law applies, as shown by Chebyshev as early as 1867. (If the expected values change during the series, then we can simply apply the law to the average deviation from the respective expected values. The law then states that this converges in probability to zero.) In fact, Chebyshev's proof works so long as the variance of the average of the first n values goes to zero as n goes to infinity. As an example, assume that each random variable in the series follows a Gaussian distribution with mean zero, but with variance equal to

, which is not bounded. At each stage, the average will be normally distributed (as the average of a set of normally distributed variables). The variance of the sum is equal to the sum of the variances, which is asymptotic to
. The variance of the average is therefore asymptotic to
and goes to zero.

There are also examples of the weak law applying even though the expected value does not exist.

Strong law

The strong law of large numbers (also called Kolmogorov's law) states that the sample average converges almost surely to the expected value

(law 3)

That is,

What this means is that the probability that, as the number of trials n goes to infinity, the average of the observations converges to the expected value, is equal to one. The modern proof of the strong law is more complex than that of the weak law, and relies on passing to an appropriate subsequence.

The strong law of large numbers can itself be seen as a special case of the pointwise ergodic theorem. This view justifies the intuitive interpretation of the expected value (for Lebesgue integration only) of a random variable when sampled repeatedly as the "long-term average".

(Law 3) is called the strong law because random variables which converge strongly (almost surely) are guaranteed to converge weakly (in probability). However the weak law is known to hold in certain conditions where the strong law does not hold and then the convergence is only weak (in probability). See #Differences between the weak law and the strong law.

The strong law applies to independent identically distributed random variables having an expected value (like the weak law). This was proved by Kolmogorov in 1930. It can also apply in other cases. Kolmogorov also showed, in 1933, that if the variables are independent and identically distributed, then for the average to converge almost surely on something (this can be considered another statement of the strong law), it is necessary that they have an expected value (and then of course the average will converge almost surely on that).

If the summands are independent but not identically distributed, then

,
provided that each Xk has a finite second moment and


.
This statement is known as Kolmogorov's strong law, see e.g. Sen & Singer (1993, Theorem 2.3.10).


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

Board footer

Powered by FluxBB