Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 2023-05-05 13:33:44

mathdrop
Member
Registered: 2022-03-07
Posts: 75

Algebraic equation-system describing a horn-antenna

After following the lecture about horn-antennas,
I was was stuck with the equation system,
so I could not do the example of the lecturer.
It could well come down to forgotten solving techniques
and I would be happy if someone could fix me ;-)


Since I'm not used to latex, I redefine as follows:

Knowns:
c=a=0.02286m  // (horizontal) waveguide aperture in H-field-direction
d=b=0.01016m  // (vertical) waveguide aperture in E-field-direction
l=lambda=0.03m  // wavelength
f=D=20db=100dimensionless  // directivity
n=51%=0.51  // aperture efficiency

Unknowns:
a=A  // (horizontal) aperture in H-field-direction
b=B  // (vertical) aperture in E-field direction
g=R1  // r min in the H-plane
h=R2  // r min in the E-plane
j=RH  // flare-height in H-field-direction
k=RE  // flare-height in E-field direction
s=lH  // slant-height in H-field-direction
t=lE  // slant-height in E-field direction


Set of equations:
f=4*pi/l^2*n*A  // out of antenna theory
A=a*b // A=aperture area

s^2=g^2+(a/2)^2  // Pythagoras geometry
t^2=h^2+(b/2)^2  // Pythagoras geometry

j/g=(a-c)/a  // triangle parallel cut
k/h=(b-d)/b  // triangle parallel cut

j=k  // horn has a flat front edge

s-g=.375*l  // flare angle in H-direction
t-h=.25*l  // flare angle in E-direction


I rearranged the equations a little
and did basic stuff:
f=4*pi/l^2*n*a*b               // 1, A->a*b since A=a*b
  <=> a*b=f/(4*pi/l^2*n)
  <=> a*b=f*l^2/(4*pi*n)
  <=> b=f*l^2/(4*pi*n*a)
s^2=g^2+(a/2)^2                // 2
  <=> a=2*sqrt(s^2-g^2)
t^2=h^2+(b/2)^2                // 3
  <=> b=2*sqrt(t^2-h^2)
  <=> h=sqrt(4*t^2-b^2)/2

k/g=(a-c)/a                    // 4, j->k since j=k
  <=> k=g-(c*g)/a

k/h=(b-d)/b                    // 5
  <=> h=(b*k)/(b-d)

s-g=.375*l <=> s=.375*l+g      // 6
t-h=.25*l  <=> t=.25*l+h       // 7


Then I tried to solve for b, first:

h=(b*(g-(c*g)/a))/(b-d)  // 4 in 5, eliminating k
  <=> (b*g*(a-c))/(a*(b-d))

Now there are many variables, shared by many equations.
Therefore I had trouble using the eliminating approach.

How could I proceed ?

Offline

#2 2023-05-07 02:06:55

mathdrop
Member
Registered: 2022-03-07
Posts: 75

Re: Algebraic equation-system describing a horn-antenna

The lecturer referenced a book from which I may get solutions,
but not the detailed steps originating from the equations above.

It seems to be hard to get there, so I'll first with that for now.

Offline

Board footer

Powered by FluxBB